Cargando…
A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface
In building a practical and robust brain-computer interface (BCI), the classification of motor imagery (MI) from electroencephalography (EEG) across multiple days is a long-standing challenge due to the large variability of the EEG signals. We collected a large dataset of MI from 5 different days wi...
Autores principales: | Ma, Jun, Yang, Banghua, Qiu, Wenzheng, Li, Yunzhe, Gao, Shouwei, Xia, Xinxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436944/ https://www.ncbi.nlm.nih.gov/pubmed/36050394 http://dx.doi.org/10.1038/s41597-022-01647-1 |
Ejemplares similares
-
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
por: Kaya, Murat, et al.
Publicado: (2018) -
A large EEG database with users’ profile information for motor imagery brain-computer interface research
por: Dreyer, Pauline, et al.
Publicado: (2023) -
A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface
por: Rathee, Dheeraj, et al.
Publicado: (2021) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Open multi-session and multi-task EEG cognitive Dataset for passive brain-computer Interface Applications
por: Hinss, Marcel F., et al.
Publicado: (2023)