Cargando…
Computer copilots for endoscopic diagnosis
Artificial intelligence (AI) tools for endoscopy are now entering clinical practice after demonstrating substantial improvements to polyp detection on colonoscopy. As this technology continues to mature, efforts to develop and validate a new frontier of possibilities—including diagnostic classificat...
Autores principales: | Diao, James A., Kvedar, Joseph C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436955/ https://www.ncbi.nlm.nih.gov/pubmed/36050460 http://dx.doi.org/10.1038/s41746-022-00678-7 |
Ejemplares similares
-
Computational drug repurposing in the age of COVID-19: mixing antiviral cocktails in silico
por: Diao, James A., et al.
Publicado: (2022) -
Mobile health technology for diverse populations: challenges and opportunities
por: Diao, James A., et al.
Publicado: (2021) -
Video-based physiologic monitoring: promising applications for the ICU and beyond
por: Diao, James A., et al.
Publicado: (2022) -
Beyond performance metrics: modeling outcomes and cost for clinical machine learning
por: Diao, James A., et al.
Publicado: (2021) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: Diao, James A., et al.
Publicado: (2021)