Cargando…

A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system

The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We de...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jongmin, Ding, Roger, Christensen, Justin, Rosenthal, Randy R., Ison, Aaron, Gillund, Daniel P., Bossert, David, Fuerschbach, Kyle H., Kindel, William, Finnegan, Patrick S., Wendt, Joel R., Gehl, Michael, Kodigala, Ashok, McGuinness, Hayden, Walker, Charles A., Kemme, Shanalyn A., Lentine, Anthony, Biedermann, Grant, Schwindt, Peter D. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436985/
https://www.ncbi.nlm.nih.gov/pubmed/36050325
http://dx.doi.org/10.1038/s41467-022-31410-4
Descripción
Sumario:The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10(−6). This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.