Cargando…

A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system

The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We de...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jongmin, Ding, Roger, Christensen, Justin, Rosenthal, Randy R., Ison, Aaron, Gillund, Daniel P., Bossert, David, Fuerschbach, Kyle H., Kindel, William, Finnegan, Patrick S., Wendt, Joel R., Gehl, Michael, Kodigala, Ashok, McGuinness, Hayden, Walker, Charles A., Kemme, Shanalyn A., Lentine, Anthony, Biedermann, Grant, Schwindt, Peter D. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436985/
https://www.ncbi.nlm.nih.gov/pubmed/36050325
http://dx.doi.org/10.1038/s41467-022-31410-4
_version_ 1784781495974494208
author Lee, Jongmin
Ding, Roger
Christensen, Justin
Rosenthal, Randy R.
Ison, Aaron
Gillund, Daniel P.
Bossert, David
Fuerschbach, Kyle H.
Kindel, William
Finnegan, Patrick S.
Wendt, Joel R.
Gehl, Michael
Kodigala, Ashok
McGuinness, Hayden
Walker, Charles A.
Kemme, Shanalyn A.
Lentine, Anthony
Biedermann, Grant
Schwindt, Peter D. D.
author_facet Lee, Jongmin
Ding, Roger
Christensen, Justin
Rosenthal, Randy R.
Ison, Aaron
Gillund, Daniel P.
Bossert, David
Fuerschbach, Kyle H.
Kindel, William
Finnegan, Patrick S.
Wendt, Joel R.
Gehl, Michael
Kodigala, Ashok
McGuinness, Hayden
Walker, Charles A.
Kemme, Shanalyn A.
Lentine, Anthony
Biedermann, Grant
Schwindt, Peter D. D.
author_sort Lee, Jongmin
collection PubMed
description The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10(−6). This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.
format Online
Article
Text
id pubmed-9436985
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94369852022-09-03 A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system Lee, Jongmin Ding, Roger Christensen, Justin Rosenthal, Randy R. Ison, Aaron Gillund, Daniel P. Bossert, David Fuerschbach, Kyle H. Kindel, William Finnegan, Patrick S. Wendt, Joel R. Gehl, Michael Kodigala, Ashok McGuinness, Hayden Walker, Charles A. Kemme, Shanalyn A. Lentine, Anthony Biedermann, Grant Schwindt, Peter D. D. Nat Commun Article The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10(−6). This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics. Nature Publishing Group UK 2022-09-01 /pmc/articles/PMC9436985/ /pubmed/36050325 http://dx.doi.org/10.1038/s41467-022-31410-4 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lee, Jongmin
Ding, Roger
Christensen, Justin
Rosenthal, Randy R.
Ison, Aaron
Gillund, Daniel P.
Bossert, David
Fuerschbach, Kyle H.
Kindel, William
Finnegan, Patrick S.
Wendt, Joel R.
Gehl, Michael
Kodigala, Ashok
McGuinness, Hayden
Walker, Charles A.
Kemme, Shanalyn A.
Lentine, Anthony
Biedermann, Grant
Schwindt, Peter D. D.
A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system
title A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system
title_full A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system
title_fullStr A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system
title_full_unstemmed A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system
title_short A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system
title_sort compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436985/
https://www.ncbi.nlm.nih.gov/pubmed/36050325
http://dx.doi.org/10.1038/s41467-022-31410-4
work_keys_str_mv AT leejongmin acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT dingroger acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT christensenjustin acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT rosenthalrandyr acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT isonaaron acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT gillunddanielp acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT bossertdavid acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT fuerschbachkyleh acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT kindelwilliam acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT finneganpatricks acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT wendtjoelr acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT gehlmichael acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT kodigalaashok acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT mcguinnesshayden acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT walkercharlesa acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT kemmeshanalyna acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT lentineanthony acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT biedermanngrant acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT schwindtpeterdd acompactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT leejongmin compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT dingroger compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT christensenjustin compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT rosenthalrandyr compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT isonaaron compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT gillunddanielp compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT bossertdavid compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT fuerschbachkyleh compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT kindelwilliam compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT finneganpatricks compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT wendtjoelr compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT gehlmichael compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT kodigalaashok compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT mcguinnesshayden compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT walkercharlesa compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT kemmeshanalyna compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT lentineanthony compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT biedermanngrant compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem
AT schwindtpeterdd compactcoldatominterferometerwithahighdatarategratingmagnetoopticaltrapandaphotonicintegratedcircuitcompatiblelasersystem