Cargando…
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
We aimed to construct a prediction model based on computed tomography (CT) radiomics features to classify COVID-19 patients into severe-, moderate-, mild-, and non-pneumonic. A total of 1110 patients were studied from a publicly available dataset with 4-class severity scoring performed by a radiolog...
Autores principales: | Shiri, Isaac, Mostafaei, Shayan, Haddadi Avval, Atlas, Salimi, Yazdan, Sanaat, Amirhossein, Akhavanallaf, Azadeh, Arabi, Hossein, Rahmim, Arman, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437017/ https://www.ncbi.nlm.nih.gov/pubmed/36050434 http://dx.doi.org/10.1038/s41598-022-18994-z |
Ejemplares similares
-
Artificial Intelligence–Driven Single-Shot PET Image Artifact Detection and Disentanglement: Toward Routine Clinical Image Quality Assurance
por: Shiri, Isaac, et al.
Publicado: (2023) -
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information
por: Khodabakhshi, Zahra, et al.
Publicado: (2021) -
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
por: Salimi, Yazdan, et al.
Publicado: (2021) -
Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning
por: Shiri, Isaac, et al.
Publicado: (2022)