Cargando…
A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation
Deep learning methods have enabled a fast, accurate and automated approach for retinal layer segmentation in posterior segment OCT images. Due to the success of semantic segmentation methods adopting the U-Net, a wide range of variants and improvements have been developed and applied to OCT segmenta...
Autores principales: | Kugelman, Jason, Allman, Joseph, Read, Scott A., Vincent, Stephen J., Tong, Janelle, Kalloniatis, Michael, Chen, Fred K., Collins, Michael J., Alonso-Caneiro, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437058/ https://www.ncbi.nlm.nih.gov/pubmed/36050364 http://dx.doi.org/10.1038/s41598-022-18646-2 |
Ejemplares similares
-
OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN
por: Viedma, Ignacio A., et al.
Publicado: (2022) -
Automatic choroidal segmentation in OCT images using supervised deep learning methods
por: Kugelman, Jason, et al.
Publicado: (2019) -
Prediction of Retinal Ganglion Cell Counts Considering Various Displacement Methods From OCT-Derived Ganglion Cell–Inner Plexiform Layer Thickness
por: Tong, Janelle, et al.
Publicado: (2022) -
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images
por: Shah, Abhay, et al.
Publicado: (2018) -
Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning
por: Kugelman, Jason, et al.
Publicado: (2020)