Cargando…

PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry

Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignan...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Amish J., Warda, Sarah, Maag, Jesper L.V., Misra, Rohan, Miranda-Román, Miguel A., Pachai, Mohini R., Lee, Cindy J., Li, Dan, Wang, Naitao, Bayshtok, Gabriella, Fishinevich, Eve, Meng, Yinuo, Wong, Elissa W.P., Yan, Juan, Giff, Emily, Pappalardi, Melissa B., McCabe, Michael T., Fletcher, Jonathan A., Rudin, Charles M., Chandarlapaty, Sarat, Scandura, Joseph M., Koche, Richard P., Glass, Jacob L., Antonescu, Cristina R., Zheng, Deyou, Chen, Yu, Chi, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437570/
https://www.ncbi.nlm.nih.gov/pubmed/35789380
http://dx.doi.org/10.1158/2159-8290.CD-21-1671
_version_ 1784781646382235648
author Patel, Amish J.
Warda, Sarah
Maag, Jesper L.V.
Misra, Rohan
Miranda-Román, Miguel A.
Pachai, Mohini R.
Lee, Cindy J.
Li, Dan
Wang, Naitao
Bayshtok, Gabriella
Fishinevich, Eve
Meng, Yinuo
Wong, Elissa W.P.
Yan, Juan
Giff, Emily
Pappalardi, Melissa B.
McCabe, Michael T.
Fletcher, Jonathan A.
Rudin, Charles M.
Chandarlapaty, Sarat
Scandura, Joseph M.
Koche, Richard P.
Glass, Jacob L.
Antonescu, Cristina R.
Zheng, Deyou
Chen, Yu
Chi, Ping
author_facet Patel, Amish J.
Warda, Sarah
Maag, Jesper L.V.
Misra, Rohan
Miranda-Román, Miguel A.
Pachai, Mohini R.
Lee, Cindy J.
Li, Dan
Wang, Naitao
Bayshtok, Gabriella
Fishinevich, Eve
Meng, Yinuo
Wong, Elissa W.P.
Yan, Juan
Giff, Emily
Pappalardi, Melissa B.
McCabe, Michael T.
Fletcher, Jonathan A.
Rudin, Charles M.
Chandarlapaty, Sarat
Scandura, Joseph M.
Koche, Richard P.
Glass, Jacob L.
Antonescu, Cristina R.
Zheng, Deyou
Chen, Yu
Chi, Ping
author_sort Patel, Amish J.
collection PubMed
description Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor–mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)–dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE: PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context–specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007
format Online
Article
Text
id pubmed-9437570
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for Cancer Research
record_format MEDLINE/PubMed
spelling pubmed-94375702023-01-05 PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry Patel, Amish J. Warda, Sarah Maag, Jesper L.V. Misra, Rohan Miranda-Román, Miguel A. Pachai, Mohini R. Lee, Cindy J. Li, Dan Wang, Naitao Bayshtok, Gabriella Fishinevich, Eve Meng, Yinuo Wong, Elissa W.P. Yan, Juan Giff, Emily Pappalardi, Melissa B. McCabe, Michael T. Fletcher, Jonathan A. Rudin, Charles M. Chandarlapaty, Sarat Scandura, Joseph M. Koche, Richard P. Glass, Jacob L. Antonescu, Cristina R. Zheng, Deyou Chen, Yu Chi, Ping Cancer Discov Research Articles Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor–mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)–dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE: PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context–specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007 American Association for Cancer Research 2022-09-02 2022-07-05 /pmc/articles/PMC9437570/ /pubmed/35789380 http://dx.doi.org/10.1158/2159-8290.CD-21-1671 Text en ©2022 The Authors; Published by the American Association for Cancer Research https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.
spellingShingle Research Articles
Patel, Amish J.
Warda, Sarah
Maag, Jesper L.V.
Misra, Rohan
Miranda-Román, Miguel A.
Pachai, Mohini R.
Lee, Cindy J.
Li, Dan
Wang, Naitao
Bayshtok, Gabriella
Fishinevich, Eve
Meng, Yinuo
Wong, Elissa W.P.
Yan, Juan
Giff, Emily
Pappalardi, Melissa B.
McCabe, Michael T.
Fletcher, Jonathan A.
Rudin, Charles M.
Chandarlapaty, Sarat
Scandura, Joseph M.
Koche, Richard P.
Glass, Jacob L.
Antonescu, Cristina R.
Zheng, Deyou
Chen, Yu
Chi, Ping
PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry
title PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry
title_full PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry
title_fullStr PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry
title_full_unstemmed PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry
title_short PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry
title_sort prc2-inactivating mutations in cancer enhance cytotoxic response to dnmt1-targeted therapy via enhanced viral mimicry
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437570/
https://www.ncbi.nlm.nih.gov/pubmed/35789380
http://dx.doi.org/10.1158/2159-8290.CD-21-1671
work_keys_str_mv AT patelamishj prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT wardasarah prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT maagjesperlv prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT misrarohan prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT mirandaromanmiguela prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT pachaimohinir prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT leecindyj prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT lidan prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT wangnaitao prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT bayshtokgabriella prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT fishinevicheve prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT mengyinuo prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT wongelissawp prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT yanjuan prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT giffemily prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT pappalardimelissab prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT mccabemichaelt prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT fletcherjonathana prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT rudincharlesm prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT chandarlapatysarat prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT scandurajosephm prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT kocherichardp prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT glassjacobl prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT antonescucristinar prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT zhengdeyou prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT chenyu prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry
AT chiping prc2inactivatingmutationsincancerenhancecytotoxicresponsetodnmt1targetedtherapyviaenhancedviralmimicry