Cargando…
Clinical deployment environments: Five pillars of translational machine learning for health
Machine Learning for Health (ML4H) has demonstrated efficacy in computer imaging and other self-contained digital workflows, but has failed to substantially impact routine clinical care. This is no longer because of poor adoption of Electronic Health Records Systems (EHRS), but because ML4H needs an...
Autores principales: | Harris, Steve, Bonnici , Tim, Keen, Thomas, Lilaonitkul, Watjana, White, Mark J., Swanepoel, Nel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437594/ https://www.ncbi.nlm.nih.gov/pubmed/36060542 http://dx.doi.org/10.3389/fdgth.2022.939292 |
Ejemplares similares
-
From compute to care: Lessons learned from deploying an early warning system into clinical practice
por: Pou-Prom, Chloé, et al.
Publicado: (2022) -
Deployment and validation of an AI system for detecting abnormal chest radiographs in clinical settings
por: Nguyen, Ngoc Huy, et al.
Publicado: (2022) -
Comparison of machine learning approaches for near-fall-detection with motion sensors
por: Hellmers, Sandra, et al.
Publicado: (2023) -
Editorial: Machine Learning in Clinical Decision-Making
por: Filiberto, Amanda C., et al.
Publicado: (2021) -
An integration engineering framework for machine learning in healthcare
por: Assadi, Azadeh, et al.
Publicado: (2022)