Cargando…
Visual state estimation in unseen environments through domain adaptation and metric learning
In robotics, deep learning models are used in many visual perception applications, including the tracking, detection and pose estimation of robotic manipulators. The state of the art methods however are conditioned on the availability of annotated training data, which may in practice be costly or ev...
Autores principales: | Güler, Püren, Stork, Johannes A., Stoyanov, Todor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437705/ https://www.ncbi.nlm.nih.gov/pubmed/36059568 http://dx.doi.org/10.3389/frobt.2022.833173 |
Ejemplares similares
Ejemplares similares
-
Modeling of Deformable Objects for Robotic Manipulation: A Tutorial and Review
por: Arriola-Rios, Veronica E., et al.
Publicado: (2020) -
An embarrassingly simple approach for visual navigation of forest environments
por: Niu, Chaoyue, et al.
Publicado: (2023) -
LPMP: A Bio-Inspired Model for Visual Localization in Challenging Environments
por: Colomer, Sylvain, et al.
Publicado: (2022) -
Adaptive Foraging in Dynamic Environments Using Scale-Free Interaction Networks
por: Rausch, Ilja, et al.
Publicado: (2020) -
Performance Metrics for Fluidic Soft Robot Rotational Actuators
por: Rupert, Levi, et al.
Publicado: (2021)