Cargando…

Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome

IMPORTANCE: Determining whether neurofilament light chain (NfL) elevations in patients who develop immune effector cell–associated neurotoxicity syndrome (ICANS) occur before or after infusion of cellular product is important to identify high-risk patients and inform whether neuroaxonal injury is la...

Descripción completa

Detalles Bibliográficos
Autores principales: Butt, Omar H., Zhou, Alice Y., Caimi, Paolo F., Luckett, Patrick H., Wisch, Julie K., Derenoncourt, Paul-Robert, Lee, Kenneth, Wu, Gregory F., de Lima, Marcos J. G., Campian, Jian L., Frank, Matthew J., DiPersio, John F., Ghobadi, Armin, Ances, Beau M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Association 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437827/
https://www.ncbi.nlm.nih.gov/pubmed/36048456
http://dx.doi.org/10.1001/jamaoncol.2022.3738
_version_ 1784781701238489088
author Butt, Omar H.
Zhou, Alice Y.
Caimi, Paolo F.
Luckett, Patrick H.
Wisch, Julie K.
Derenoncourt, Paul-Robert
Lee, Kenneth
Wu, Gregory F.
de Lima, Marcos J. G.
Campian, Jian L.
Frank, Matthew J.
DiPersio, John F.
Ghobadi, Armin
Ances, Beau M.
author_facet Butt, Omar H.
Zhou, Alice Y.
Caimi, Paolo F.
Luckett, Patrick H.
Wisch, Julie K.
Derenoncourt, Paul-Robert
Lee, Kenneth
Wu, Gregory F.
de Lima, Marcos J. G.
Campian, Jian L.
Frank, Matthew J.
DiPersio, John F.
Ghobadi, Armin
Ances, Beau M.
author_sort Butt, Omar H.
collection PubMed
description IMPORTANCE: Determining whether neurofilament light chain (NfL) elevations in patients who develop immune effector cell–associated neurotoxicity syndrome (ICANS) occur before or after infusion of cellular product is important to identify high-risk patients and inform whether neuroaxonal injury is latent or a consequence of treatment. OBJECTIVE: To quantify serial NfL levels in patients undergoing cellular therapy. DESIGN, SETTING, AND PARTICIPANTS: This retrospective 2-center study examined plasma NfL levels in 30 patients with detailed medical and treatment history, including all major pretreatment and posttreatment risk factors. Exclusion criteria included dementia and severe, symptomatic central nervous system (CNS) involvement. MAIN OUTCOMES AND MEASURES: Patients’ NfL levels were measured at 7 time points: baseline (prelymphodepletion), during lymphodepletion, postinfusion day (D) 1, D3, D7, D14, and D30. Prediction accuracy for the development of ICANS was next modeled using receiver operating characteristic (ROC) classification. Finally, univariate and multivariate modeling examined the association between NfL levels, ICANS, and potential risk factors including demographic (age, sex), oncologic (tumor burden, history of CNS involvement), neurologic (history of nononcologic CNS disease or neuropathy), and neurotoxic exposure histories (vincristine, cytarabine, methotrexate, or CNS radiotherapy). RESULTS: A total of 30 patients (median [range] age, 64 [22-80] years; 12 women [40%] and 18 men [60%]) were included. Individuals who developed ICANS had elevations in NfL prior to lymphodepletion and chimeric antigen receptor T-cell infusion compared with those who did not develop ICANS (no ICANS: 29.4 pg/mL, vs any ICANS: 87.6 pg/mL; P < .001). Baseline NfL levels further predicted ICANS development with high accuracy (area under the ROC curve, 0.96), sensitivity (0.91), and specificity (0.95). Levels of NfL remained elevated across all time points, up to 30 days postinfusion. Baseline NfL levels correlated with ICANS severity but not demographic factors, oncologic history, nononcologic neurologic history, or history of exposure to neurotoxic therapies. CONCLUSIONS AND RELEVANCE: In a subset of patients in this cross-sectional study, the risk of developing ICANS was associated with preexisting neuroaxonal injury that was quantifiable with plasma NfL level. This latent neuroaxonal injury was present prior to drug administration but was not associated with historic neurotoxic therapies or nononcologic neurologic disease. Preinfusion NfL may further permit early screening and identification of patients most at risk for ICANS. Additional studies are needed to determine NfL’s utility as a predictive biomarker for early (preemptive or prophylactic) intervention and to delineate the origin of this underlying neural injury.
format Online
Article
Text
id pubmed-9437827
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Medical Association
record_format MEDLINE/PubMed
spelling pubmed-94378272022-09-16 Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome Butt, Omar H. Zhou, Alice Y. Caimi, Paolo F. Luckett, Patrick H. Wisch, Julie K. Derenoncourt, Paul-Robert Lee, Kenneth Wu, Gregory F. de Lima, Marcos J. G. Campian, Jian L. Frank, Matthew J. DiPersio, John F. Ghobadi, Armin Ances, Beau M. JAMA Oncol Brief Report IMPORTANCE: Determining whether neurofilament light chain (NfL) elevations in patients who develop immune effector cell–associated neurotoxicity syndrome (ICANS) occur before or after infusion of cellular product is important to identify high-risk patients and inform whether neuroaxonal injury is latent or a consequence of treatment. OBJECTIVE: To quantify serial NfL levels in patients undergoing cellular therapy. DESIGN, SETTING, AND PARTICIPANTS: This retrospective 2-center study examined plasma NfL levels in 30 patients with detailed medical and treatment history, including all major pretreatment and posttreatment risk factors. Exclusion criteria included dementia and severe, symptomatic central nervous system (CNS) involvement. MAIN OUTCOMES AND MEASURES: Patients’ NfL levels were measured at 7 time points: baseline (prelymphodepletion), during lymphodepletion, postinfusion day (D) 1, D3, D7, D14, and D30. Prediction accuracy for the development of ICANS was next modeled using receiver operating characteristic (ROC) classification. Finally, univariate and multivariate modeling examined the association between NfL levels, ICANS, and potential risk factors including demographic (age, sex), oncologic (tumor burden, history of CNS involvement), neurologic (history of nononcologic CNS disease or neuropathy), and neurotoxic exposure histories (vincristine, cytarabine, methotrexate, or CNS radiotherapy). RESULTS: A total of 30 patients (median [range] age, 64 [22-80] years; 12 women [40%] and 18 men [60%]) were included. Individuals who developed ICANS had elevations in NfL prior to lymphodepletion and chimeric antigen receptor T-cell infusion compared with those who did not develop ICANS (no ICANS: 29.4 pg/mL, vs any ICANS: 87.6 pg/mL; P < .001). Baseline NfL levels further predicted ICANS development with high accuracy (area under the ROC curve, 0.96), sensitivity (0.91), and specificity (0.95). Levels of NfL remained elevated across all time points, up to 30 days postinfusion. Baseline NfL levels correlated with ICANS severity but not demographic factors, oncologic history, nononcologic neurologic history, or history of exposure to neurotoxic therapies. CONCLUSIONS AND RELEVANCE: In a subset of patients in this cross-sectional study, the risk of developing ICANS was associated with preexisting neuroaxonal injury that was quantifiable with plasma NfL level. This latent neuroaxonal injury was present prior to drug administration but was not associated with historic neurotoxic therapies or nononcologic neurologic disease. Preinfusion NfL may further permit early screening and identification of patients most at risk for ICANS. Additional studies are needed to determine NfL’s utility as a predictive biomarker for early (preemptive or prophylactic) intervention and to delineate the origin of this underlying neural injury. American Medical Association 2022-09-01 2022-11 /pmc/articles/PMC9437827/ /pubmed/36048456 http://dx.doi.org/10.1001/jamaoncol.2022.3738 Text en Copyright 2022 Butt OH et al. JAMA Oncology. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the CC-BY License.
spellingShingle Brief Report
Butt, Omar H.
Zhou, Alice Y.
Caimi, Paolo F.
Luckett, Patrick H.
Wisch, Julie K.
Derenoncourt, Paul-Robert
Lee, Kenneth
Wu, Gregory F.
de Lima, Marcos J. G.
Campian, Jian L.
Frank, Matthew J.
DiPersio, John F.
Ghobadi, Armin
Ances, Beau M.
Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome
title Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome
title_full Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome
title_fullStr Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome
title_full_unstemmed Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome
title_short Assessment of Pretreatment and Posttreatment Evolution of Neurofilament Light Chain Levels in Patients Who Develop Immune Effector Cell–Associated Neurotoxicity Syndrome
title_sort assessment of pretreatment and posttreatment evolution of neurofilament light chain levels in patients who develop immune effector cell–associated neurotoxicity syndrome
topic Brief Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437827/
https://www.ncbi.nlm.nih.gov/pubmed/36048456
http://dx.doi.org/10.1001/jamaoncol.2022.3738
work_keys_str_mv AT buttomarh assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT zhoualicey assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT caimipaolof assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT luckettpatrickh assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT wischjuliek assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT derenoncourtpaulrobert assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT leekenneth assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT wugregoryf assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT delimamarcosjg assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT campianjianl assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT frankmatthewj assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT dipersiojohnf assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT ghobadiarmin assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome
AT ancesbeaum assessmentofpretreatmentandposttreatmentevolutionofneurofilamentlightchainlevelsinpatientswhodevelopimmuneeffectorcellassociatedneurotoxicitysyndrome