Cargando…
gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier
The blood–brain barrier (BBB) selectively protects the central nervous system (CNS) from external insults, but its function can represent a limit for the passage of therapeutic molecules. Numerous in vitro models of the BBB have been realized in order to study the passage of drugs for neurodegenerat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437923/ https://www.ncbi.nlm.nih.gov/pubmed/36060696 http://dx.doi.org/10.3389/fphys.2022.932099 |
_version_ | 1784781718943694848 |
---|---|
author | Barra, Teresa Falanga, Annarita Bellavita, Rosa Laforgia, Vincenza Prisco, Marina Galdiero, Stefania Valiante, Salvatore |
author_facet | Barra, Teresa Falanga, Annarita Bellavita, Rosa Laforgia, Vincenza Prisco, Marina Galdiero, Stefania Valiante, Salvatore |
author_sort | Barra, Teresa |
collection | PubMed |
description | The blood–brain barrier (BBB) selectively protects the central nervous system (CNS) from external insults, but its function can represent a limit for the passage of therapeutic molecules. Numerous in vitro models of the BBB have been realized in order to study the passage of drugs for neurodegenerative diseases, but these in vitro models are not very representative of the physiological conditions because of a limited supply of oxygen and nutrients due to static conditions. To avoid this phenomenon, we used a millifluidic bioreactor model that ensures a circulation of the medium and, therefore, of the nutrients, thanks to the continuous laminar flow. This dynamic model consists of a double-culture chamber separated by a membrane on which brain endothelial cells are cultured in order to evaluate the passage of the drug. Furthermore, in the lower chamber, SH-SY5Y were seeded as 3D spheroids to evaluate the drug passage through these cells. As nanodelivery system, we used liposomes functionalized with viral fusion peptide to evaluate the passage of a neuroprotective agent, pituitary adenylate cyclase-activating polypeptide (PACAP), through the dynamic in vitro model of the BBB. We showed that our nanodelivery system, made of functionalized liposomes and loaded with specific molecules, efficiently crosses the in vitro fluid-dynamic model of the BBB. Our findings represent an important step for further experimental investigations on PACAP administration as a therapeutic agent by an enhanced drug delivery system. Our results can improve the diffusion of good practice in neuroscience laboratories, helping to spread the 3R rules. |
format | Online Article Text |
id | pubmed-9437923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94379232022-09-03 gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier Barra, Teresa Falanga, Annarita Bellavita, Rosa Laforgia, Vincenza Prisco, Marina Galdiero, Stefania Valiante, Salvatore Front Physiol Physiology The blood–brain barrier (BBB) selectively protects the central nervous system (CNS) from external insults, but its function can represent a limit for the passage of therapeutic molecules. Numerous in vitro models of the BBB have been realized in order to study the passage of drugs for neurodegenerative diseases, but these in vitro models are not very representative of the physiological conditions because of a limited supply of oxygen and nutrients due to static conditions. To avoid this phenomenon, we used a millifluidic bioreactor model that ensures a circulation of the medium and, therefore, of the nutrients, thanks to the continuous laminar flow. This dynamic model consists of a double-culture chamber separated by a membrane on which brain endothelial cells are cultured in order to evaluate the passage of the drug. Furthermore, in the lower chamber, SH-SY5Y were seeded as 3D spheroids to evaluate the drug passage through these cells. As nanodelivery system, we used liposomes functionalized with viral fusion peptide to evaluate the passage of a neuroprotective agent, pituitary adenylate cyclase-activating polypeptide (PACAP), through the dynamic in vitro model of the BBB. We showed that our nanodelivery system, made of functionalized liposomes and loaded with specific molecules, efficiently crosses the in vitro fluid-dynamic model of the BBB. Our findings represent an important step for further experimental investigations on PACAP administration as a therapeutic agent by an enhanced drug delivery system. Our results can improve the diffusion of good practice in neuroscience laboratories, helping to spread the 3R rules. Frontiers Media S.A. 2022-08-19 /pmc/articles/PMC9437923/ /pubmed/36060696 http://dx.doi.org/10.3389/fphys.2022.932099 Text en Copyright © 2022 Barra, Falanga, Bellavita, Laforgia, Prisco, Galdiero and Valiante. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Barra, Teresa Falanga, Annarita Bellavita, Rosa Laforgia, Vincenza Prisco, Marina Galdiero, Stefania Valiante, Salvatore gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier |
title | gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier |
title_full | gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier |
title_fullStr | gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier |
title_full_unstemmed | gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier |
title_short | gH625-liposomes deliver PACAP through a dynamic in vitro model of the blood–brain barrier |
title_sort | gh625-liposomes deliver pacap through a dynamic in vitro model of the blood–brain barrier |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437923/ https://www.ncbi.nlm.nih.gov/pubmed/36060696 http://dx.doi.org/10.3389/fphys.2022.932099 |
work_keys_str_mv | AT barrateresa gh625liposomesdeliverpacapthroughadynamicinvitromodelofthebloodbrainbarrier AT falangaannarita gh625liposomesdeliverpacapthroughadynamicinvitromodelofthebloodbrainbarrier AT bellavitarosa gh625liposomesdeliverpacapthroughadynamicinvitromodelofthebloodbrainbarrier AT laforgiavincenza gh625liposomesdeliverpacapthroughadynamicinvitromodelofthebloodbrainbarrier AT priscomarina gh625liposomesdeliverpacapthroughadynamicinvitromodelofthebloodbrainbarrier AT galdierostefania gh625liposomesdeliverpacapthroughadynamicinvitromodelofthebloodbrainbarrier AT valiantesalvatore gh625liposomesdeliverpacapthroughadynamicinvitromodelofthebloodbrainbarrier |