Cargando…
Automated extraction of information of lung cancer staging from unstructured reports of PET-CT interpretation: natural language processing with deep-learning
BACKGROUND: Extracting metastatic information from previous radiologic-text reports is important, however, laborious annotations have limited the usability of these texts. We developed a deep-learning model for extracting primary lung cancer sites and metastatic lymph nodes and distant metastasis in...
Autores principales: | Park, Hyung Jun, Park, Namu, Lee, Jang Ho, Choi, Myeong Geun, Ryu, Jin-Sook, Song, Min, Choi, Chang-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438247/ https://www.ncbi.nlm.nih.gov/pubmed/36050674 http://dx.doi.org/10.1186/s12911-022-01975-7 |
Ejemplares similares
-
Classification of pleural effusions using deep learning visual models: contrastive-loss
por: Lee, Jang Ho, et al.
Publicado: (2022) -
Deep learning to convert unstructured CT pulmonary angiography reports into structured reports
por: Spandorfer, Adam, et al.
Publicado: (2019) -
Natural language processing to convert unstructured COVID-19 chest-CT reports into structured reports
por: Fanni, Salvatore Claudio, et al.
Publicado: (2023) -
Diagnostic value of (18)F-FDG PET/CT in discriminating between benign and malignant lesions of the ribs
por: Choi, Sunju, et al.
Publicado: (2022) -
Deep learning approach to detection of colonoscopic information from unstructured reports
por: Seong, Donghyeong, et al.
Publicado: (2023)