Cargando…
Rapid-killing efficacy substantiates the antiseptic property of the synergistic combination of carvacrol and nerol against nosocomial pathogens
Globally, new classes of synthetic and natural antibiotics and antivirulents have continuously been validated for their potential broad-spectrum antagonistic activity with the aim of identifying an effective active molecule to prevent the spread of infectious agents in both food industry and medical...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438373/ https://www.ncbi.nlm.nih.gov/pubmed/36053368 http://dx.doi.org/10.1007/s00203-022-03197-x |
Sumario: | Globally, new classes of synthetic and natural antibiotics and antivirulents have continuously been validated for their potential broad-spectrum antagonistic activity with the aim of identifying an effective active molecule to prevent the spread of infectious agents in both food industry and medical field. In view of this, present study is aimed at evaluating the rapid killing efficacy of bioactive molecules Carvacrol (C) and Nerol (N) through British Standard European Norm 1276: phase2/step1 (EN1276) protocol. Active molecules C and N showed broad-spectrum antimicrobial activity against the test strains Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus hirae at concentration range of 78.125, 625, 156.25 and 312.5 μg/mL, respectively, for C, and 625 μg/mL for N. Whereas, combinatorial approach showed efficient activity with four times reduced concentration of C and N at 78.125 and 156.25 µg/mL, respectively, against test strains. Further, EN1276 results proved the rapid killing efficacy of test strains in 1 min of contact time with significant (> 5 log) growth reduction at 100X concentration of actives. SEM analysis and reduced concentration of protease, lipids and carbohydrate contents of treated group biofilm components ascertained preformed biofilm disruption potential of C + N on polystyrene and nail surfaces. C + N at synergistic concentration exhibited no adverse effect on HaCaT cells at 78.125 µg/mL (C) + 156.25 µg/mL (N). Taken together, based on the observed experimental results, present study evidence the antiseptic/disinfectant ability of C + N and suggest that the combination can preferentially be used in foam-based hand wash formulations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00203-022-03197-x. |
---|