Cargando…
Edge computing based secure health monitoring framework for electronic healthcare system
Nowadays, Smart Healthcare Systems (SHS) are frequently used by people for personal healthcare observations using various smart devices. The SHS uses IoT technology and cloud infrastructure for data capturing, transmitting it through smart devices, data storage, processing, and healthcare advice. Pr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438893/ https://www.ncbi.nlm.nih.gov/pubmed/36091662 http://dx.doi.org/10.1007/s10586-022-03717-w |
Sumario: | Nowadays, Smart Healthcare Systems (SHS) are frequently used by people for personal healthcare observations using various smart devices. The SHS uses IoT technology and cloud infrastructure for data capturing, transmitting it through smart devices, data storage, processing, and healthcare advice. Processing such a huge amount of data from numerous IoT devices in a short time is quite challenging. Thus, technological frameworks such as edge computing or fog computing can be used as a middle layer between cloud and user in SHS. It reduces the response time for data processing at the lower level (edge level). But, Edge of Things (EoT) also suffers from security and privacy issues. A robust healthcare monitoring framework with secure data storage and access is needed. It will provide a quick response in case of the production of abnormal data and store/access the sensitive data securely. This paper proposed a Secure Framework based on the Edge of Things (SEoT) for Smart healthcare systems. This framework is mainly designed for real-time health monitoring, maintaining the security and confidentiality of the healthcare data in a controlled manner. This paper included clustering approaches for analyzing bio-signal data for abnormality detection and Attribute-Based Encryption (ABE) for bio-signal data security and secure access. The experimental results of the proposed framework show improved performance with maintaining the accuracy of up to 98.5% and data security. |
---|