Cargando…
A general iterative clustering algorithm
The quality of a cluster analysis of unlabeled units depends on the quality of the between units dissimilarity measures. Data‐dependent dissimilarity is more objective than data independent geometric measures such as Euclidean distance. As suggested by Breiman, many data driven approaches are based...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438941/ https://www.ncbi.nlm.nih.gov/pubmed/36061078 http://dx.doi.org/10.1002/sam.11573 |
_version_ | 1784781939353321472 |
---|---|
author | Lin, Ziqiang Laska, Eugene Siegel, Carole |
author_facet | Lin, Ziqiang Laska, Eugene Siegel, Carole |
author_sort | Lin, Ziqiang |
collection | PubMed |
description | The quality of a cluster analysis of unlabeled units depends on the quality of the between units dissimilarity measures. Data‐dependent dissimilarity is more objective than data independent geometric measures such as Euclidean distance. As suggested by Breiman, many data driven approaches are based on decision tree ensembles, such as a random forest (RF), that produce a proximity matrix that can easily be transformed into a dissimilarity matrix. An RF can be obtained using labels that distinguish units with real data from units with synthetic data. The resulting dissimilarity matrix is input to a clustering program and units are assigned labels corresponding to cluster membership. We introduce a general iterative cluster (GIC) algorithm that improves the proximity matrix and clusters of the base RF. The cluster labels are used to grow a new RF yielding an updated proximity matrix, which is entered into the clustering program. The process is repeated until convergence. The same procedure can be used with many base procedures such as the extremely randomized tree ensemble. We evaluate the performance of the GIC algorithm using benchmark and simulated data sets. The properties measured by the Silhouette score are substantially superior to the base clustering algorithm. The GIC package has been released in R: https://cran.r‐project.org/web/packages/GIC/index.html. |
format | Online Article Text |
id | pubmed-9438941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-94389412022-10-14 A general iterative clustering algorithm Lin, Ziqiang Laska, Eugene Siegel, Carole Stat Anal Data Min Research Articles The quality of a cluster analysis of unlabeled units depends on the quality of the between units dissimilarity measures. Data‐dependent dissimilarity is more objective than data independent geometric measures such as Euclidean distance. As suggested by Breiman, many data driven approaches are based on decision tree ensembles, such as a random forest (RF), that produce a proximity matrix that can easily be transformed into a dissimilarity matrix. An RF can be obtained using labels that distinguish units with real data from units with synthetic data. The resulting dissimilarity matrix is input to a clustering program and units are assigned labels corresponding to cluster membership. We introduce a general iterative cluster (GIC) algorithm that improves the proximity matrix and clusters of the base RF. The cluster labels are used to grow a new RF yielding an updated proximity matrix, which is entered into the clustering program. The process is repeated until convergence. The same procedure can be used with many base procedures such as the extremely randomized tree ensemble. We evaluate the performance of the GIC algorithm using benchmark and simulated data sets. The properties measured by the Silhouette score are substantially superior to the base clustering algorithm. The GIC package has been released in R: https://cran.r‐project.org/web/packages/GIC/index.html. Wiley Subscription Services, Inc., A Wiley Company 2022-01-31 2022-08 /pmc/articles/PMC9438941/ /pubmed/36061078 http://dx.doi.org/10.1002/sam.11573 Text en © 2022 The Authors. Statistical Analysis and Data Mining published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Lin, Ziqiang Laska, Eugene Siegel, Carole A general iterative clustering algorithm |
title | A general iterative clustering algorithm |
title_full | A general iterative clustering algorithm |
title_fullStr | A general iterative clustering algorithm |
title_full_unstemmed | A general iterative clustering algorithm |
title_short | A general iterative clustering algorithm |
title_sort | general iterative clustering algorithm |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438941/ https://www.ncbi.nlm.nih.gov/pubmed/36061078 http://dx.doi.org/10.1002/sam.11573 |
work_keys_str_mv | AT linziqiang ageneraliterativeclusteringalgorithm AT laskaeugene ageneraliterativeclusteringalgorithm AT siegelcarole ageneraliterativeclusteringalgorithm AT linziqiang generaliterativeclusteringalgorithm AT laskaeugene generaliterativeclusteringalgorithm AT siegelcarole generaliterativeclusteringalgorithm |