Cargando…
A general iterative clustering algorithm
The quality of a cluster analysis of unlabeled units depends on the quality of the between units dissimilarity measures. Data‐dependent dissimilarity is more objective than data independent geometric measures such as Euclidean distance. As suggested by Breiman, many data driven approaches are based...
Autores principales: | Lin, Ziqiang, Laska, Eugene, Siegel, Carole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438941/ https://www.ncbi.nlm.nih.gov/pubmed/36061078 http://dx.doi.org/10.1002/sam.11573 |
Ejemplares similares
-
Gabapentin Enacarbil Extended‐Release Versus Placebo: A Likely Responder Reanalysis of a Randomized Clinical Trial
por: Laska, Eugene M., et al.
Publicado: (2020) -
An iterative algorithm for a system of generalized implicit variational inclusions
por: Ahmad, Iqbal, et al.
Publicado: (2016) -
IterCluster: a barcode clustering algorithm for long fragment read analysis
por: Weng, Jiancong, et al.
Publicado: (2020) -
An Iterative Algorithm for the Reflexive Solution of the General Coupled Matrix Equations
por: Zhou, Zhongli, et al.
Publicado: (2013) -
Iterative algorithms II
por: Argyros, Ioannis K, et al.
Publicado: (2017)