Cargando…
Nationwide hospital admission data statistics and disease-specific 30-day readmission prediction
PURPOSE: Hospital readmission prediction uses historical patient visit data to train machine learning models to predict risk of patients being readmitted after the discharge. Data used to train models, such as patient demographics, disease types, localized distributions etc., play significant roles...
Autores principales: | Wang, Shuwen, Zhu, Xingquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9439279/ https://www.ncbi.nlm.nih.gov/pubmed/36065327 http://dx.doi.org/10.1007/s13755-022-00195-7 |
Ejemplares similares
-
Predicting and Validating 30-day Hospital Readmission in Adults With Diabetes Whose Index Admission Is Diabetes-related
por: Soh, Jade Gek Sang, et al.
Publicado: (2022) -
Inpatient Readmissions and Emergency Department Visits within 30 Days of a Hospital Admission
por: Brennan, Jesse J., et al.
Publicado: (2015) -
Incidence and cost analysis of hospital admission and 30‐day readmission among patients with cirrhosis
por: Chirapongsathorn, Sakkarin, et al.
Publicado: (2018) -
PREDICTIVE MODEL OF 30-DAY HOSPITAL READMISSION FOR PATIENTS WITH ALZHEIMER’S DISEASE
por: Mahmoudi, Elham, et al.
Publicado: (2022) -
Outcomes and Predictors of 30-Day Readmissions for Hyperthyroidism: A Nationwide Study
por: Salim, Michael, et al.
Publicado: (2021)