Cargando…
Continuity of the temperature in a multi-phase transition problem
Locally bounded, local weak solutions to a doubly nonlinear parabolic equation, which models the multi-phase transition of a material, is shown to be locally continuous. Moreover, an explicit modulus of continuity is given. The effect of the p-Laplacian type diffusion is also considered.
Autores principales: | Gianazza, Ugo, Liao, Naian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9439994/ https://www.ncbi.nlm.nih.gov/pubmed/36068870 http://dx.doi.org/10.1007/s00208-021-02255-x |
Ejemplares similares
-
3D Multi-Branched SnO(2) Semiconductor Nanostructures as Optical Waveguides
por: Rossella, Francesco, et al.
Publicado: (2019) -
Landauer Bound and Continuous Phase Transitions
por: Diamantini, Maria Cristina
Publicado: (2023) -
Phase oscillations and transition-energy problems
por: Johnsen, K
Publicado: (1953) -
Multi-step phase transition crystal with dielectric constant bistability and temperature-dependent conductivity
por: Feng, W. B., et al.
Publicado: (2022) -
Theory of symmetry changes at continuous phase transitions
por: Kocinski, Jerzy
Publicado: (1983)