Cargando…
Searching for the ground state of complex spin-ice systems using deep learning techniques
Searching for the ground state of a given system is one of the most fundamental and classical questions in scientific research fields. However, when the system is complex and large, it often becomes an intractable problem; there is essentially no possibility of finding a global energy minimum state...
Autores principales: | Kwon, H. Y., Yoon, H. G., Park, S. M., Lee, D. B., Shi, D., Wu, Y. Z., Choi, J. W., Won, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440018/ https://www.ncbi.nlm.nih.gov/pubmed/36056094 http://dx.doi.org/10.1038/s41598-022-19312-3 |
Ejemplares similares
-
Searching for spin glass ground states through deep reinforcement learning
por: Fan, Changjun, et al.
Publicado: (2023) -
Estimating the effective fields of spin configurations using a deep learning technique
por: Lee, D. B., et al.
Publicado: (2021) -
Persistent dynamic magnetic state in artificial honeycomb spin ice
por: Guo, J., et al.
Publicado: (2023) -
Orbital energy mismatch engenders high-spin ground states in heterobimetallic complexes
por: Coste, Scott C., et al.
Publicado: (2020) -
Magnetic Hamiltonian parameter estimation using deep learning techniques
por: Kwon, H. Y., et al.
Publicado: (2020)