Cargando…
A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets
The dwarf mongoose optimization (DMO) algorithm developed in 2022 was applied to solve continuous mechanical engineering design problems with a considerable balance of the exploration and exploitation phases as a metaheuristic approach. Still, the DMO is restricted in its exploitation phase, somewha...
Autores principales: | Akinola, Olatunji A., Ezugwu, Absalom E., Oyelade, Olaide N., Agushaka, Jeffrey O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440036/ https://www.ncbi.nlm.nih.gov/pubmed/36056062 http://dx.doi.org/10.1038/s41598-022-18993-0 |
Ejemplares similares
-
Binary dwarf mongoose optimizer for solving high-dimensional feature selection problems
por: Akinola, Olatunji A., et al.
Publicado: (2022) -
Improved Dwarf Mongoose Optimization for Constrained Engineering Design Problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
Advanced dwarf mongoose optimization for solving CEC 2011 and CEC 2017 benchmark problems
por: Agushaka, Jeffrey O., et al.
Publicado: (2022) -
Evolutionary binary feature selection using adaptive ebola optimization search algorithm for high-dimensional datasets
por: Oyelade, Olaide N., et al.
Publicado: (2023) -
Multiclass feature selection with metaheuristic optimization algorithms: a review
por: Akinola, Olatunji O., et al.
Publicado: (2022)