Cargando…
Modeling the solubility of light hydrocarbon gases and their mixture in brine with machine learning and equations of state
Knowledge of the solubilities of hydrocarbon components of natural gas in pure water and aqueous electrolyte solutions is important in terms of engineering designs and environmental aspects. In the current work, six machine-learning algorithms, namely Random Forest, Extra Tree, adaptive boosting sup...
Autores principales: | Mohammadi, Mohammad-Reza, Hadavimoghaddam, Fahimeh, Atashrouz, Saeid, Abedi, Ali, Hemmati-Sarapardeh, Abdolhossein, Mohaddespour, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440136/ https://www.ncbi.nlm.nih.gov/pubmed/36056055 http://dx.doi.org/10.1038/s41598-022-18983-2 |
Ejemplares similares
-
Solubility of gaseous hydrocarbons in ionic liquids using equations of state and machine learning approaches
por: Nakhaei-Kohani, Reza, et al.
Publicado: (2022) -
Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state
por: Mohammadi, Mohammad-Reza, et al.
Publicado: (2021) -
Modeling of H(2)S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches
por: Mousavi, Seyed-Pezhman, et al.
Publicado: (2023) -
Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state
por: Madani, Seyed Ali, et al.
Publicado: (2021) -
Toward empirical correlations for estimating the specific heat capacity of nanofluids utilizing GRG, GP, GEP, and GMDH
por: Deymi, Omid, et al.
Publicado: (2023)