Cargando…

A validated high-throughput method for assaying rat lungworm (Angiostrongylus cantonensis) motility when challenged with potentially anthelmintic natural products from Hawaiian fungi

Parasitic nematodes devastate human and animal health. The limited number of anthelmintics available is concerning, especially because of increasing drug resistance. Anthelmintics are commonly derived from natural products, e.g. fungi and plants. This investigation aimed to develop a high-throughput...

Descripción completa

Detalles Bibliográficos
Autores principales: Rollins, Randi L., Qader, Mallique, Gosnell, William L., Wang, Cong, Cao, Shugeng, Cowie, Robert H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440163/
https://www.ncbi.nlm.nih.gov/pubmed/35236524
http://dx.doi.org/10.1017/S0031182022000191
Descripción
Sumario:Parasitic nematodes devastate human and animal health. The limited number of anthelmintics available is concerning, especially because of increasing drug resistance. Anthelmintics are commonly derived from natural products, e.g. fungi and plants. This investigation aimed to develop a high-throughput whole organism screening method based on a motility assay using the wMicroTracker system. Anthelmintic activity of extracts from Hawaiian fungi was screened against third-stage larvae of the parasitic nematode Angiostrongylus cantonensis, categorized according to the degree of motility reduction. Of the 108 crude samples and fractionated products, 48 showed some level of activity, with 13 reducing motility to 0–25% of the maximum exhibited, including two pure compounds, emethacin B and epicoccin E, neither previously known to exhibit anthelmintic properties. The process of bioassay-guided fractionation is illustrated in detail based on analysis of one of the crude extracts, which led to isolation of lamellicolic anhydride, a compound with moderate activity. This study validates the wMicroTracker system as an economical and high-throughput option for testing large suites of natural products against A. cantonensis, adds to the short list of diverse parasites for which it has been validated and highlights the value of A. cantonensis and Hawaiian fungi for discovery of new anthelmintics.