Cargando…
Image copy-move forgery detection and localization based on super-BPD segmentation and DCNN
With the increasing importance of image information, image forgery seriously threatens the security of image content. Copy-move forgery detection (CMFD) is a greater challenge because its abnormality is smaller than other forgeries. To solve the problem that the detection results of the most image C...
Autores principales: | Li, Qianwen, Wang, Chengyou, Zhou, Xiao, Qin, Zhiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440200/ https://www.ncbi.nlm.nih.gov/pubmed/36056097 http://dx.doi.org/10.1038/s41598-022-19325-y |
Ejemplares similares
-
A Survey of Partition-Based Techniques for Copy-Move Forgery Detection
por: Nathalie Diane, Wandji Nanda, et al.
Publicado: (2014) -
Copy-Move Forgery Detection (CMFD) Using Deep Learning for Image and Video Forensics
por: Rodriguez-Ortega, Yohanna, et al.
Publicado: (2021) -
Design of Automated Deep Learning-Based Fusion Model for Copy-Move Image Forgery Detection
por: Krishnaraj, N., et al.
Publicado: (2022) -
Retracted: Design of Automated Deep Learning-Based Fusion Model for Copy-Move Image Forgery Detection
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Exposing Image Forgery by Detecting Consistency of Shadow
por: Ke, Yongzhen, et al.
Publicado: (2014)