Cargando…
Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning
Spatially resolved transcriptomics provides a new way to define spatial contexts and understand the pathogenesis of complex human diseases. Although some computational frameworks can characterize spatial context via various clustering methods, the detailed spatial architectures and functional zonati...
Autores principales: | Chang, Yuzhou, He, Fei, Wang, Juexin, Chen, Shuo, Li, Jingyi, Liu, Jixin, Yu, Yang, Su, Li, Ma, Anjun, Allen, Carter, Lin, Yu, Sun, Shaoli, Liu, Bingqiang, Javier Otero, José, Chung, Dongjun, Fu, Hongjun, Li, Zihai, Xu, Dong, Ma, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440291/ https://www.ncbi.nlm.nih.gov/pubmed/36090815 http://dx.doi.org/10.1016/j.csbj.2022.08.029 |
Ejemplares similares
-
Single-cell biological network inference using a heterogeneous graph transformer
por: Ma, Anjun, et al.
Publicado: (2023) -
MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer
por: Wang, Xiaoying, et al.
Publicado: (2023) -
scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
por: Wang, Juexin, et al.
Publicado: (2021) -
Author Correction: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
por: Wang, Juexin, et al.
Publicado: (2022) -
Deep learning analysis of single‐cell data in empowering clinical implementation
por: Ma, Anjun, et al.
Publicado: (2022)