Cargando…
Choosing multiple linear regressions for weather-based crop yield prediction with ABSOLUT v1.2 applied to the districts of Germany
ABSOLUT v1.2 is an adaptive algorithm that uses correlations between time-aggregated weather variables and crop yields for yield prediction. In contrast to conventional regression-based yield prediction methods, a very broad range of possible input features and their combinations are exhaustively te...
Autor principal: | Conradt, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440329/ https://www.ncbi.nlm.nih.gov/pubmed/36056956 http://dx.doi.org/10.1007/s00484-022-02356-5 |
Ejemplares similares
-
Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction
por: Gonzalez-Sanchez, Alberto, et al.
Publicado: (2014) -
Applied linear regression /
por: Weisberg, Sanford, 1947-
Publicado: (2005) -
Impact of derived global weather data on simulated crop yields
por: van Wart, Justin, et al.
Publicado: (2013) -
Village-level climate and weather variability, mediated by village-level crop yield, is associated with linear growth in children in Uganda
por: Ssentongo, Paddy, et al.
Publicado: (2020) -
Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability
por: Gaudin, Amélie C. M., et al.
Publicado: (2015)