Cargando…
scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to capture transcriptomes at single-cell resolution. However, dropout events distort the gene expression levels and underlying biological signals, misleading the downstream analysis of scRNA-seq data. RESULTS: We develop a s...
Autores principales: | Qi, Jing, Sheng, Qiongyu, Zhou, Yang, Hua, Jiao, Xiao, Shutong, Jin, Shuilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440561/ https://www.ncbi.nlm.nih.gov/pubmed/36056412 http://dx.doi.org/10.1186/s13578-022-00886-4 |
Ejemplares similares
-
An efficient scRNA-seq dropout imputation method using graph attention network
por: Xu, Chenyang, et al.
Publicado: (2021) -
SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model
por: Zheng, Yan, et al.
Publicado: (2021) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018) -
SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data
por: Qi, Jing, et al.
Publicado: (2021) -
Correction: SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data
por: Qi, Jing, et al.
Publicado: (2022)