Cargando…
The CT delta-radiomics based machine learning approach in evaluating multiple primary lung adenocarcinoma
OBJECT: To evaluate the difference between multiple primary lung adenocarcinoma (MPLA) and solitary primary lung adenocarcinoma (SPLA) by delta-radiomics based machine learning algorithms in CT images. METHODS: A total of 1094 patients containing 268 MPLAs and 826 SPLAs were recruited for this retro...
Autores principales: | Ma, Yanqing, Li, Jie, Xu, Xiren, Zhang, Yang, Lin, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440600/ https://www.ncbi.nlm.nih.gov/pubmed/36057553 http://dx.doi.org/10.1186/s12885-022-10036-1 |
Ejemplares similares
-
A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma
por: Yuan, Hang, et al.
Publicado: (2022) -
The CT-based intratumoral and peritumoral machine learning radiomics analysis in predicting lymph node metastasis in rectal carcinoma
por: Yuan, Hang, et al.
Publicado: (2022) -
How Does the Delta-Radiomics Better Differentiate Pre-Invasive GGNs From Invasive GGNs?
por: Ma, Yanqing, et al.
Publicado: (2020) -
A CT-Based Tumoral and Mini-Peritumoral Radiomics Approach: Differentiate Fat-Poor Angiomyolipoma from Clear Cell Renal Cell Carcinoma
por: Ma, Yanqing, et al.
Publicado: (2021) -
A convention-radiomics CT nomogram for differentiating fat-poor angiomyolipoma from clear cell renal cell carcinoma
por: Ma, Yanqing, et al.
Publicado: (2021)