Cargando…

Age-dependent effects of social isolation on mesolimbic dopamine release

In humans, social isolation is a known risk factor for disorders such as substance use disorder and depression. In rodents, social isolation is a commonly used environmental manipulation that increases the occurrence of behaviors related to these disorders. Age is thought to influence the effects of...

Descripción completa

Detalles Bibliográficos
Autores principales: McWain, Megan A., Pace, Rachel L., Nalan, Patricia A., Lester, Deranda B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440747/
https://www.ncbi.nlm.nih.gov/pubmed/36057752
http://dx.doi.org/10.1007/s00221-022-06449-w
Descripción
Sumario:In humans, social isolation is a known risk factor for disorders such as substance use disorder and depression. In rodents, social isolation is a commonly used environmental manipulation that increases the occurrence of behaviors related to these disorders. Age is thought to influence the effects of social isolation, but this predictive relationship is not well-understood. The present study aimed to determine the effects of social isolation on mesolimbic dopamine release at different developmental age points in mice. The experimental ages and their corresponding comparison to human age stages are as follows: 1 month = adolescence, 4 months = mature adulthood, 12 months = middle adulthood, and 18 months = older adult. Mice were socially isolated for 6 weeks during these developmental stages, then in vivo fixed potential amperometry with recording electrodes in the nucleus accumbens was used to measure stimulation-evoked dopamine release, the synaptic half-life of dopamine, dopamine autoreceptor functioning, and the dopaminergic response to cocaine. Isolation altered dopamine functioning in an age-dependent manner. Specifically, isolation increased dopamine release in the adult ages, but not adolescence, potentially due to increased inhibitory effects of dopamine autoreceptors following adolescent social isolation. Regarding the cocaine challenge, isolation increased dopaminergic responses to cocaine in adolescent mice, but not the adult mice. These findings have implications for clinical and experimental settings. Elucidating the relationship between age, social isolation, and neurochemical changes associated with substance use disorder and depression may lead to improvements in preventing and treating these disorders.