Cargando…

Visible Light–Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review

The scientific data review shows that advanced oxidation processes based on the hydroxyl or sulfate radicals are of great interest among the currently conventional water and wastewater treatment methods. Different advanced treatment processes such as photocatalysis, Fenton’s reagent, ozonation, and...

Descripción completa

Detalles Bibliográficos
Autor principal: Zawadzki, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440748/
https://www.ncbi.nlm.nih.gov/pubmed/36090740
http://dx.doi.org/10.1007/s11270-022-05831-2
Descripción
Sumario:The scientific data review shows that advanced oxidation processes based on the hydroxyl or sulfate radicals are of great interest among the currently conventional water and wastewater treatment methods. Different advanced treatment processes such as photocatalysis, Fenton’s reagent, ozonation, and persulfate-based processes were investigated to degrade contaminants of emerging concern (CECs) such as pesticides, personal care products, pharmaceuticals, disinfectants, dyes, and estrogenic substances. This article presents a general overview of visible light–driven advanced oxidation processes for the removal of chlorfenvinphos (organophosphorus insecticide), methylene blue (azo dye), and diclofenac (non-steroidal anti-inflammatory drug). The following visible light–driven treatment methods were reviewed: photocatalysis, sulfate radical oxidation, and photoelectrocatalysis. Visible light, among other sources of energy, is a renewable energy source and an excellent substitute for ultraviolet radiation used in advanced oxidation processes. It creates a high application potential for solar-assisted advanced oxidation processes in water and wastewater technology. Despite numerous publications of advanced oxidation processes (AOPs), more extensive research is needed to investigate the mechanisms of contaminant degradation in the presence of visible light. Therefore, this paper provides an important source of information on the degradation mechanism of emerging contaminants. An important aspect in the work is the analysis of process parameters affecting the degradation process. The initial concentration of CECs, pH, reaction time, and catalyst dosage are discussed and analyzed. Based on a comprehensive survey of previous studies, opportunities for applications of AOPs are presented, highlighting the need for further efforts to address dominant barriers to knowledge acquisition.