Cargando…

Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection

Inherently narrowband near-infrared organic photodetectors are highly desired for many applications, including biological imaging and surveillance. However, they suffer from a low photon-to-charge conversion efficiencies and utilize spectral narrowing techniques which strongly rely on the used mater...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Quan, Zeiske, Stefan, Jiang, Xueshi, Desta, Derese, Mertens, Sigurd, Gielen, Sam, Shanivarasanthe, Rachith, Boyen, Hans-Gerd, Armin, Ardalan, Vandewal, Koen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440933/
https://www.ncbi.nlm.nih.gov/pubmed/36057674
http://dx.doi.org/10.1038/s41467-022-32845-5
Descripción
Sumario:Inherently narrowband near-infrared organic photodetectors are highly desired for many applications, including biological imaging and surveillance. However, they suffer from a low photon-to-charge conversion efficiencies and utilize spectral narrowing techniques which strongly rely on the used material or on a nano-photonic device architecture. Here, we demonstrate a general and facile approach towards wavelength-selective near-infrared phtotodetection through intentionally n-doping 500–600 nm-thick nonfullerene blends. We show that an electron-donating amine-interlayer can induce n-doping, resulting in a localized electric field near the anode and selective collection of photo-generated carriers in this region. As only weakly absorbed photons reach this region, the devices have a narrowband response at wavelengths close to the absorption onset of the blends with a high spectral rejection ratio. These spectrally selective photodetectors exhibit zero-bias external quantum efficiencies of ~20–30% at wavelengths of 900–1100 nm, with a full-width-at-half-maximum of ≤50 nm, as well as detectivities of >10(12) Jones.