Cargando…
Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents
BACKGROUND: Nearly 70% of all new cases of bladder cancer are non-muscle invasive disease, the treatment for which includes transurethral resection followed by intravesical therapy. Unfortunately, recurrence rates approach 50% in part due to poor intravesical drug delivery. Hyperthermia is frequentl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441059/ https://www.ncbi.nlm.nih.gov/pubmed/36118287 http://dx.doi.org/10.3233/BLC-200350 |
_version_ | 1784782494731599872 |
---|---|
author | Grimberg, Dominic C. Shah, Ankeet Tan, Wei Phin Etienne, Wiguins Spasojevic, Ivan Inman, Brant A. |
author_facet | Grimberg, Dominic C. Shah, Ankeet Tan, Wei Phin Etienne, Wiguins Spasojevic, Ivan Inman, Brant A. |
author_sort | Grimberg, Dominic C. |
collection | PubMed |
description | BACKGROUND: Nearly 70% of all new cases of bladder cancer are non-muscle invasive disease, the treatment for which includes transurethral resection followed by intravesical therapy. Unfortunately, recurrence rates approach 50% in part due to poor intravesical drug delivery. Hyperthermia is frequently used as an adjunct to intravesical chemotherapy to improve drug delivery and response to treatment. OBJECTIVE: To assess the solubility profile of intravesical chemotherapies under varying conditions of pH and temperature. METHODS: Using microplate laser nephelometry we measured the solubility of three intravesical chemotherapy agents (mitomycin C, gemcitabine, and cisplatin) at varying physical conditions. Drugs were assessed at room temperature (23°C), body temperature (37°C), and 43°C, the temperature used for hyperthermic intravesical treatments. To account for variations in urine pH, solubility was also investigated at pH 4.00, 6.00, and 8.00. RESULTS: Heat incrementally increased the solubility of all three drugs studied. Conversely, pH largely did not impact solubility aside for gemcitabine which showed slightly reduced solubility at pH 8.00 versus 6.00 or 4.00. Mitomycin C at the commonly used 2.0 mg/mL was insoluble at room temperature, but soluble at both 37 and 43°C. CONCLUSIONS: Hyperthermia as an adjunct to intravesical treatment would improve drug solubility, and likely drug delivery as some current regimens are insoluble without heat. Improvements in solubility also allow for testing of alternative administration regimens to improve drug delivery or tolerability. Further studies are needed to confirm that improvements in solubility result in increased drug delivery. |
format | Online Article Text |
id | pubmed-9441059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-94410592022-09-16 Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents Grimberg, Dominic C. Shah, Ankeet Tan, Wei Phin Etienne, Wiguins Spasojevic, Ivan Inman, Brant A. Bladder Cancer Research Report BACKGROUND: Nearly 70% of all new cases of bladder cancer are non-muscle invasive disease, the treatment for which includes transurethral resection followed by intravesical therapy. Unfortunately, recurrence rates approach 50% in part due to poor intravesical drug delivery. Hyperthermia is frequently used as an adjunct to intravesical chemotherapy to improve drug delivery and response to treatment. OBJECTIVE: To assess the solubility profile of intravesical chemotherapies under varying conditions of pH and temperature. METHODS: Using microplate laser nephelometry we measured the solubility of three intravesical chemotherapy agents (mitomycin C, gemcitabine, and cisplatin) at varying physical conditions. Drugs were assessed at room temperature (23°C), body temperature (37°C), and 43°C, the temperature used for hyperthermic intravesical treatments. To account for variations in urine pH, solubility was also investigated at pH 4.00, 6.00, and 8.00. RESULTS: Heat incrementally increased the solubility of all three drugs studied. Conversely, pH largely did not impact solubility aside for gemcitabine which showed slightly reduced solubility at pH 8.00 versus 6.00 or 4.00. Mitomycin C at the commonly used 2.0 mg/mL was insoluble at room temperature, but soluble at both 37 and 43°C. CONCLUSIONS: Hyperthermia as an adjunct to intravesical treatment would improve drug solubility, and likely drug delivery as some current regimens are insoluble without heat. Improvements in solubility also allow for testing of alternative administration regimens to improve drug delivery or tolerability. Further studies are needed to confirm that improvements in solubility result in increased drug delivery. IOS Press 2020-12-14 /pmc/articles/PMC9441059/ /pubmed/36118287 http://dx.doi.org/10.3233/BLC-200350 Text en © 2020 – IOS Press and the authors. All rights reserved https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Report Grimberg, Dominic C. Shah, Ankeet Tan, Wei Phin Etienne, Wiguins Spasojevic, Ivan Inman, Brant A. Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents |
title | Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents |
title_full | Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents |
title_fullStr | Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents |
title_full_unstemmed | Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents |
title_short | Hyperthermia Improves Solubility of Intravesical Chemotherapeutic Agents |
title_sort | hyperthermia improves solubility of intravesical chemotherapeutic agents |
topic | Research Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441059/ https://www.ncbi.nlm.nih.gov/pubmed/36118287 http://dx.doi.org/10.3233/BLC-200350 |
work_keys_str_mv | AT grimbergdominicc hyperthermiaimprovessolubilityofintravesicalchemotherapeuticagents AT shahankeet hyperthermiaimprovessolubilityofintravesicalchemotherapeuticagents AT tanweiphin hyperthermiaimprovessolubilityofintravesicalchemotherapeuticagents AT etiennewiguins hyperthermiaimprovessolubilityofintravesicalchemotherapeuticagents AT spasojevicivan hyperthermiaimprovessolubilityofintravesicalchemotherapeuticagents AT inmanbranta hyperthermiaimprovessolubilityofintravesicalchemotherapeuticagents |