Cargando…

Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell

In this paper, an ultra-highly sensitive light-induced thermoelastic spectroscopy (LITES) based hydrogen chloride (HCl) sensor, exploiting a custom low-frequency quartz tuning fork (QTF) and a fiber-coupled multi-pass cell (MPC) with optical length of 40 m, was demonstrated. A low resonant frequency...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Shunda, Sampaolo, Angelo, Patimisco, Pietro, Spagnolo, Vincenzo, Ma, Yufei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441257/
https://www.ncbi.nlm.nih.gov/pubmed/36068798
http://dx.doi.org/10.1016/j.pacs.2022.100381
Descripción
Sumario:In this paper, an ultra-highly sensitive light-induced thermoelastic spectroscopy (LITES) based hydrogen chloride (HCl) sensor, exploiting a custom low-frequency quartz tuning fork (QTF) and a fiber-coupled multi-pass cell (MPC) with optical length of 40 m, was demonstrated. A low resonant frequency of 2.89 kHz of QTF is advantageous to produce a long energy accumulation time in LITES. Furthermore, the use of an MPC with the fiber-coupled structure not only avoids the difficulty in optical alignment but also enhances the system robustness. A distributed feedback (DFB) diode laser emitting at 1.74 µm was used as the excitation source. Under the same operating conditions, the using of low-frequency QTF provided a ~2 times signal improvement compared to that achieved using a standard 32 kHz QTF. At an integration time of 200 ms, a minimum detection limit (MDL) of 148 ppb was achieved. The reported sensor also shows an excellent linear response to HCl gas concentration in the investigated range.