Cargando…

All-optical light-induced thermoacoustic spectroscopy for remote and non-contact gas sensing

All-optical light-induced thermoacoustic spectroscopy (AO-LITS) is reported for the first time for highly sensitive and selective gas sensing, in which a commercial standard quartz tuning fork (QTF) is employed as a photothermal detector. The vibration of the QTF was measured by the highly sensitive...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Yufeng, Zhao, Jinbiao, Lu, Ping, Sima, Chaotan, Zhang, Wanjin, Fu, Lujun, Liu, Deming, Zhang, Jiangshan, Wu, Hongpeng, Dong, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441261/
https://www.ncbi.nlm.nih.gov/pubmed/36068797
http://dx.doi.org/10.1016/j.pacs.2022.100389
Descripción
Sumario:All-optical light-induced thermoacoustic spectroscopy (AO-LITS) is reported for the first time for highly sensitive and selective gas sensing, in which a commercial standard quartz tuning fork (QTF) is employed as a photothermal detector. The vibration of the QTF was measured by the highly sensitive fiber-optic Fabry-Pérot (FP) interferometry (FPI) technique, instead of the piezoelectric detection in the conventional LITS. To improve the stability of the sensor system, a compact QTF-based fiber-optic FPI module is fabricated by 3D printing technique and a dual-wavelength demodulation method with the ellipse-fitting differential-cross-multiplication algorithm (DW-EF-DCM) is exploited for the FPI measurement. The all-optical detection scheme has the advantages of remote detection and immunity to electromagnetic interference. A minimum detection limit (MDL) of 422 ppb was achieved for hydrogen sulfide (H(2)S), which was ~ 3 times lower than a conventional electrical LITS sensor system. The AO-LITS can provide a promising approach for remote and non-contact gas sensing in the whole infrared spectral region.