Cargando…
Cell and Organism Technologies for Assessment of the SARS-CoV-2 Infectivity in Fluid Environment
Under conditions of COVID-19 pandemic, considerable amounts of SARS-CoV-2 contained in household, municipal, and medical wastewaters inevitably reach natural water bodies. Possible preservation of virus infectivity in liquid environment is of a paramount epidemiological importance. Experiments demon...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441323/ https://www.ncbi.nlm.nih.gov/pubmed/36058968 http://dx.doi.org/10.1007/s10517-022-05574-4 |
Sumario: | Under conditions of COVID-19 pandemic, considerable amounts of SARS-CoV-2 contained in household, municipal, and medical wastewaters inevitably reach natural water bodies. Possible preservation of virus infectivity in liquid environment is of a paramount epidemiological importance. Experiments demonstrated that SARS-CoV-2 is resistant to multiple freezing/thawing cycles and retains its infectivity in tap and river water for up to 2 days at 20°C and 7 days at 4°C. In natural milk, its viability is preserved in a refrigerator for 6 days. The exposure of aquarium fish to the virus-containing water fails to cause any infection. |
---|