Cargando…
Prediction of survival in oropharyngeal squamous cell carcinoma using machine learning algorithms: A study based on the surveillance, epidemiology, and end results database
BACKGROUND: We determined appropriate survival prediction machine learning models for patients with oropharyngeal squamous cell carcinoma (OPSCC) using the “Surveillance, Epidemiology, and End Results” (SEER) database. METHODS: In total, 4039 patients diagnosed with OPSCC between 2004 and 2016 were...
Autores principales: | Kim, Su Il, Kang, Jeong Wook, Eun, Young-Gyu, Lee, Young Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441569/ https://www.ncbi.nlm.nih.gov/pubmed/36072804 http://dx.doi.org/10.3389/fonc.2022.974678 |
Ejemplares similares
-
Incidence, Prognostic Factors and Survival for Hemangioblastoma of the Central Nervous System: Analysis Based on the Surveillance, Epidemiology, and End Results Database
por: Yin, Xiangdong, et al.
Publicado: (2020) -
Post-treatment surveillance testing of patients with colorectal cancer and the association with survival: protocol for a retrospective cohort study of the Surveillance, Epidemiology, and End Results (SEER)-Medicare database
por: Hines, Robert B, et al.
Publicado: (2018) -
Clear Cell Meningioma in the Central Nervous System: Analysis of Surveillance, Epidemiology, and End Results Database
por: Wang, Yubo, et al.
Publicado: (2021) -
Prognostic factors and treatment outcomes of spinal osteosarcoma: Surveillance, epidemiology, and end results database analysis
por: Wang, Jing, et al.
Publicado: (2023) -
Primary lung cancer in children and adolescents: Analysis of a surveillance, epidemiology, and end results database
por: Shao, Weipeng, et al.
Publicado: (2023)