Cargando…
Performance of a deep learning tool to detect missed aortic dilatation in a large chest CT cohort
PURPOSE: Thoracic aortic (TA) dilatation (TAD) is a risk factor for acute aortic syndrome and must therefore be reported in every CT report. However, the complex anatomy of the thoracic aorta impedes TAD detection. We investigated the performance of a deep learning (DL) prototype as a secondary read...
Autores principales: | Pradella, Maurice, Achermann, Rita, Sperl, Jonathan I., Kärgel, Rainer, Rapaka, Saikiran, Cyriac, Joshy, Yang, Shan, Sommer, Gregor, Stieltjes, Bram, Bremerich, Jens, Brantner, Philipp, Sauter, Alexander W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441594/ https://www.ncbi.nlm.nih.gov/pubmed/36072871 http://dx.doi.org/10.3389/fcvm.2022.972512 |
Ejemplares similares
-
Atri-U: assisted image analysis in routine cardiovascular magnetic resonance volumetry of the left atrium
por: Anastasopoulos, Constantin, et al.
Publicado: (2021) -
Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography
por: Weikert, Thomas, et al.
Publicado: (2020) -
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning
por: Anastasopoulos, Constantin, et al.
Publicado: (2020) -
Evaluation of an AI-Powered Lung Nodule Algorithm for Detection and 3D Segmentation of Primary Lung Tumors
por: Weikert, Thomas, et al.
Publicado: (2019) -
Towards More Structure: Comparing TNM Staging Completeness and Processing Time of Text-Based Reports versus Fully Segmented and Annotated PET/CT Data of Non-Small-Cell Lung Cancer
por: Sexauer, Raphael, et al.
Publicado: (2018)