Cargando…
Clustering CITE-seq data with a canonical correlation-based deep learning method
Single-cell multiomics sequencing techniques have rapidly developed in the past few years. Among these techniques, single-cell cellular indexing of transcriptomes and epitopes (CITE-seq) allows simultaneous quantification of gene expression and surface proteins. Clustering CITE-seq data have the gre...
Autores principales: | Yuan, Musu, Chen, Liang, Deng, Minghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441595/ https://www.ncbi.nlm.nih.gov/pubmed/36072672 http://dx.doi.org/10.3389/fgene.2022.977968 |
Ejemplares similares
-
TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer
por: Song, Tao, et al.
Publicado: (2022) -
Clustering single-cell multi-omics data with MoClust
por: Yuan, Musu, et al.
Publicado: (2022) -
Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2019) -
Corrigendum: Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2020) -
MulCNN: An efficient and accurate deep learning method based on gene embedding for cell type identification in single-cell RNA-seq data
por: Jiao, Linfang, et al.
Publicado: (2023)