Cargando…
COVID-19 CT image segmentation method based on swin transformer
Owing to its significant contagion and mutation, the new crown pneumonia epidemic has caused more than 520 million infections worldwide and has brought irreversible effects on the society. Computed tomography (CT) images can clearly demonstrate lung lesions of patients. This study used deep learning...
Autores principales: | Sun, Weiwei, Chen, Jungang, Yan, Li, Lin, Jinzhao, Pang, Yu, Zhang, Guo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441795/ https://www.ncbi.nlm.nih.gov/pubmed/36072854 http://dx.doi.org/10.3389/fphys.2022.981463 |
Ejemplares similares
-
SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer
por: Jiang, Yun, et al.
Publicado: (2022) -
High-Resolution Swin Transformer for Automatic Medical Image Segmentation
por: Wei, Chen, et al.
Publicado: (2023) -
Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation
por: Yi, Xunpeng, et al.
Publicado: (2022) -
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022) -
CCT: Lightweight compact convolutional transformer for lung disease CT image classification
por: Sun, Weiwei, et al.
Publicado: (2022)