Cargando…
MGA-YOLO: A lightweight one-stage network for apple leaf disease detection
Apple leaf diseases seriously damage the yield and quality of apples. Current apple leaf disease diagnosis methods primarily rely on human visual inspection, which often results in low efficiency and insufficient accuracy. Many computer vision algorithms have been proposed to diagnose apple leaf dis...
Autores principales: | Wang, Yiwen, Wang, Yaojun, Zhao, Jingbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441945/ https://www.ncbi.nlm.nih.gov/pubmed/36072327 http://dx.doi.org/10.3389/fpls.2022.927424 |
Ejemplares similares
-
ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases
por: Xu, Weishi, et al.
Publicado: (2023) -
EADD-YOLO: An efficient and accurate disease detector for apple leaf using improved lightweight YOLOv5
por: Zhu, Shisong, et al.
Publicado: (2023) -
Lightweight-Convolutional Neural Network for Apple Leaf Disease Identification
por: Fu, Lili, et al.
Publicado: (2022) -
YOLO-SCL: a lightweight detection model for citrus psyllid based on spatial channel interaction
por: Lyu, Shilei, et al.
Publicado: (2023) -
MixSeg: a lightweight and accurate mix structure network for semantic segmentation of apple leaf disease in complex environments
por: Lu, Bibo, et al.
Publicado: (2023)