Cargando…
Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis
BACKGROUND: Accurate prediction of prognosis is critical for therapeutic decisions in chondrosarcoma patients. Several prognostic models have been created utilizing multivariate Cox regression or binary classification-based machine learning approaches to predict the 3- and 5-year survival of patient...
Autores principales: | Yan, Lizhao, Gao, Nan, Ai, Fangxing, Zhao, Yingsong, Kang, Yu, Chen, Jianghai, Weng, Yuxiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9442032/ https://www.ncbi.nlm.nih.gov/pubmed/36072795 http://dx.doi.org/10.3389/fonc.2022.967758 |
Ejemplares similares
-
Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database
por: Jiang, Chen, et al.
Publicado: (2023) -
Incidence trends and survival of metastatic prostate cancer with bone and visceral involvement: 2010-2019 surveillance, epidemiology, and end results
por: Kadeerhan, Gaohaer, et al.
Publicado: (2023) -
Prediction of survival in oropharyngeal squamous cell carcinoma using machine learning algorithms: A study based on the surveillance, epidemiology, and end results database
por: Kim, Su Il, et al.
Publicado: (2022) -
Treatment method and prognostic factors of chondrosarcoma: based on Surveillance, Epidemiology, and End Results (SEER) database
por: Hua, Kun-Chi, et al.
Publicado: (2020) -
Prognostic factors for patients with chondrosarcoma: A survival analysis based on the Surveillance, Epidemiology, and End Results (SEER) database (1973–2012)
por: Nie, Zhigang, et al.
Publicado: (2018)