Cargando…
Integrating temporal single-cell gene expression modalities for trajectory inference and disease prediction
BACKGROUND: Current methods for analyzing single-cell datasets have relied primarily on static gene expression measurements to characterize the molecular state of individual cells. However, capturing temporal changes in cell state is crucial for the interpretation of dynamic phenotypes such as the c...
Autores principales: | Ranek, Jolene S., Stanley, Natalie, Purvis, Jeremy E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9442962/ https://www.ncbi.nlm.nih.gov/pubmed/36064614 http://dx.doi.org/10.1186/s13059-022-02749-0 |
Ejemplares similares
-
Feature selection for preserving biological trajectories in single-cell data
por: Ranek, Jolene S., et al.
Publicado: (2023) -
UniTVelo: temporally unified RNA velocity reinforces single-cell trajectory inference
por: Gao, Mingze, et al.
Publicado: (2022) -
A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics
por: Burclaff, Joseph, et al.
Publicado: (2022) -
Inferring the structures of signaling motifs from paired dynamic traces of single cells
por: Haggerty, Raymond A., et al.
Publicado: (2021) -
Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks
por: Wang, Yi Kan, et al.
Publicado: (2013)