Cargando…
Machine learning algorithms for predicting low birth weight in Ethiopia
BACKGROUND: Birth weight is a significant determinant of the likelihood of survival of an infant. Babies born at low birth weight are 25 times more likely to die than at normal birth weight. Low birth weight (LBW) affects one out of every seven newborns, accounting for about 14.6 percent of the babi...
Autor principal: | Bekele, Wondesen Teshome |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443037/ https://www.ncbi.nlm.nih.gov/pubmed/36064400 http://dx.doi.org/10.1186/s12911-022-01981-9 |
Ejemplares similares
-
Predictors of Community-Based Health Insurance in Ethiopia via Multilevel Mixed-Effects Modelling: Evidence from the 2019 Ethiopia Mini Demography and Health Survey
por: Teshome Bekele, Wondesen
Publicado: (2022) -
The knowledge and practice towards COVID-19 pandemic prevention among residents of Ethiopia. An online cross-sectional study
por: Bekele, Daniel, et al.
Publicado: (2021) -
Machine learning-based approach for predicting low birth weight
por: Ranjbar, Amene, et al.
Publicado: (2023) -
Predicting risks of low birth weight in Bangladesh with machine learning
por: Islam Pollob, S. M. Ashikul, et al.
Publicado: (2022) -
Prediction of Birth Weight by Using Neonatal Anthropometric Parameters at Birth in Finote Selam Hospital, Ethiopia
por: Tiruneh, Chalachew, et al.
Publicado: (2021)