Cargando…

Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials

Solid‐state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge‐carrier transmission. Here, unco...

Descripción completa

Detalles Bibliográficos
Autores principales: Shu, Rui, Han, Zhijia, Elsukova, Anna, Zhu, Yongbin, Qin, Peng, Jiang, Feng, Lu, Jun, Persson, Per O. Å., Palisaitis, Justinas, le Febvrier, Arnaud, Zhang, Wenqing, Cojocaru‐Mirédin, Oana, Yu, Yuan, Eklund, Per, Liu, Weishu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443448/
https://www.ncbi.nlm.nih.gov/pubmed/35851767
http://dx.doi.org/10.1002/advs.202202594
_version_ 1784782984127184896
author Shu, Rui
Han, Zhijia
Elsukova, Anna
Zhu, Yongbin
Qin, Peng
Jiang, Feng
Lu, Jun
Persson, Per O. Å.
Palisaitis, Justinas
le Febvrier, Arnaud
Zhang, Wenqing
Cojocaru‐Mirédin, Oana
Yu, Yuan
Eklund, Per
Liu, Weishu
author_facet Shu, Rui
Han, Zhijia
Elsukova, Anna
Zhu, Yongbin
Qin, Peng
Jiang, Feng
Lu, Jun
Persson, Per O. Å.
Palisaitis, Justinas
le Febvrier, Arnaud
Zhang, Wenqing
Cojocaru‐Mirédin, Oana
Yu, Yuan
Eklund, Per
Liu, Weishu
author_sort Shu, Rui
collection PubMed
description Solid‐state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge‐carrier transmission. Here, unconventional Janus‐type nanoprecipitates are uncovered in Mg(3)Sb(1.5)Bi(0.5) formed by side‐by‐side Bi‐ and Ge‐rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous‐like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy‐disorder and nanoprecipitate scattering. The thermoelectric figure‐of‐merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property‐tailoring mechanism.
format Online
Article
Text
id pubmed-9443448
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-94434482022-09-09 Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials Shu, Rui Han, Zhijia Elsukova, Anna Zhu, Yongbin Qin, Peng Jiang, Feng Lu, Jun Persson, Per O. Å. Palisaitis, Justinas le Febvrier, Arnaud Zhang, Wenqing Cojocaru‐Mirédin, Oana Yu, Yuan Eklund, Per Liu, Weishu Adv Sci (Weinh) Research Articles Solid‐state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge‐carrier transmission. Here, unconventional Janus‐type nanoprecipitates are uncovered in Mg(3)Sb(1.5)Bi(0.5) formed by side‐by‐side Bi‐ and Ge‐rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous‐like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy‐disorder and nanoprecipitate scattering. The thermoelectric figure‐of‐merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property‐tailoring mechanism. John Wiley and Sons Inc. 2022-07-18 /pmc/articles/PMC9443448/ /pubmed/35851767 http://dx.doi.org/10.1002/advs.202202594 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Shu, Rui
Han, Zhijia
Elsukova, Anna
Zhu, Yongbin
Qin, Peng
Jiang, Feng
Lu, Jun
Persson, Per O. Å.
Palisaitis, Justinas
le Febvrier, Arnaud
Zhang, Wenqing
Cojocaru‐Mirédin, Oana
Yu, Yuan
Eklund, Per
Liu, Weishu
Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials
title Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials
title_full Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials
title_fullStr Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials
title_full_unstemmed Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials
title_short Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials
title_sort solid‐state janus nanoprecipitation enables amorphous‐like heat conduction in crystalline mg(3)sb(2)‐based thermoelectric materials
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443448/
https://www.ncbi.nlm.nih.gov/pubmed/35851767
http://dx.doi.org/10.1002/advs.202202594
work_keys_str_mv AT shurui solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT hanzhijia solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT elsukovaanna solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT zhuyongbin solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT qinpeng solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT jiangfeng solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT lujun solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT perssonperoa solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT palisaitisjustinas solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT lefebvrierarnaud solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT zhangwenqing solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT cojocarumiredinoana solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT yuyuan solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT eklundper solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials
AT liuweishu solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials