Cargando…
Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials
Solid‐state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge‐carrier transmission. Here, unco...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443448/ https://www.ncbi.nlm.nih.gov/pubmed/35851767 http://dx.doi.org/10.1002/advs.202202594 |
_version_ | 1784782984127184896 |
---|---|
author | Shu, Rui Han, Zhijia Elsukova, Anna Zhu, Yongbin Qin, Peng Jiang, Feng Lu, Jun Persson, Per O. Å. Palisaitis, Justinas le Febvrier, Arnaud Zhang, Wenqing Cojocaru‐Mirédin, Oana Yu, Yuan Eklund, Per Liu, Weishu |
author_facet | Shu, Rui Han, Zhijia Elsukova, Anna Zhu, Yongbin Qin, Peng Jiang, Feng Lu, Jun Persson, Per O. Å. Palisaitis, Justinas le Febvrier, Arnaud Zhang, Wenqing Cojocaru‐Mirédin, Oana Yu, Yuan Eklund, Per Liu, Weishu |
author_sort | Shu, Rui |
collection | PubMed |
description | Solid‐state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge‐carrier transmission. Here, unconventional Janus‐type nanoprecipitates are uncovered in Mg(3)Sb(1.5)Bi(0.5) formed by side‐by‐side Bi‐ and Ge‐rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous‐like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy‐disorder and nanoprecipitate scattering. The thermoelectric figure‐of‐merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property‐tailoring mechanism. |
format | Online Article Text |
id | pubmed-9443448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94434482022-09-09 Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials Shu, Rui Han, Zhijia Elsukova, Anna Zhu, Yongbin Qin, Peng Jiang, Feng Lu, Jun Persson, Per O. Å. Palisaitis, Justinas le Febvrier, Arnaud Zhang, Wenqing Cojocaru‐Mirédin, Oana Yu, Yuan Eklund, Per Liu, Weishu Adv Sci (Weinh) Research Articles Solid‐state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge‐carrier transmission. Here, unconventional Janus‐type nanoprecipitates are uncovered in Mg(3)Sb(1.5)Bi(0.5) formed by side‐by‐side Bi‐ and Ge‐rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous‐like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy‐disorder and nanoprecipitate scattering. The thermoelectric figure‐of‐merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property‐tailoring mechanism. John Wiley and Sons Inc. 2022-07-18 /pmc/articles/PMC9443448/ /pubmed/35851767 http://dx.doi.org/10.1002/advs.202202594 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Shu, Rui Han, Zhijia Elsukova, Anna Zhu, Yongbin Qin, Peng Jiang, Feng Lu, Jun Persson, Per O. Å. Palisaitis, Justinas le Febvrier, Arnaud Zhang, Wenqing Cojocaru‐Mirédin, Oana Yu, Yuan Eklund, Per Liu, Weishu Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials |
title | Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials |
title_full | Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials |
title_fullStr | Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials |
title_full_unstemmed | Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials |
title_short | Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg(3)Sb(2)‐Based Thermoelectric Materials |
title_sort | solid‐state janus nanoprecipitation enables amorphous‐like heat conduction in crystalline mg(3)sb(2)‐based thermoelectric materials |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443448/ https://www.ncbi.nlm.nih.gov/pubmed/35851767 http://dx.doi.org/10.1002/advs.202202594 |
work_keys_str_mv | AT shurui solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT hanzhijia solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT elsukovaanna solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT zhuyongbin solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT qinpeng solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT jiangfeng solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT lujun solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT perssonperoa solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT palisaitisjustinas solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT lefebvrierarnaud solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT zhangwenqing solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT cojocarumiredinoana solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT yuyuan solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT eklundper solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials AT liuweishu solidstatejanusnanoprecipitationenablesamorphouslikeheatconductionincrystallinemg3sb2basedthermoelectricmaterials |