Cargando…
Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis
Bacterial endophthalmitis (BE) is an acute eye infection and potentially irreversible blinding ocular disease. The empirical intravitreous injection of antibiotic is the primary treatment once diagnosed as BE. However, the overuse of antibiotic contributes to the drug resistance of pathogens and the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443450/ https://www.ncbi.nlm.nih.gov/pubmed/35794437 http://dx.doi.org/10.1002/advs.202202485 |
_version_ | 1784782984646230016 |
---|---|
author | Li, Tingting Wu, Yan Cai, Wenting Wang, Dong Ren, Chengda Shen, Tianyi Yu, Donghui Qiang, Sujing Hu, Chengyu Zhao, Zheng Yu, Jing Peng, Chen Tang, Ben Zhong |
author_facet | Li, Tingting Wu, Yan Cai, Wenting Wang, Dong Ren, Chengda Shen, Tianyi Yu, Donghui Qiang, Sujing Hu, Chengyu Zhao, Zheng Yu, Jing Peng, Chen Tang, Ben Zhong |
author_sort | Li, Tingting |
collection | PubMed |
description | Bacterial endophthalmitis (BE) is an acute eye infection and potentially irreversible blinding ocular disease. The empirical intravitreous injection of antibiotic is the primary treatment once diagnosed as BE. However, the overuse of antibiotic contributes to the drug resistance of pathogens and the retinal toxicity of antibiotic limits its application in clinic. Herein, a cationic aggregation‐induced emission luminogens named with triphenylamine thiophen pyridinium (TTPy) is reported for photodynamic treatment of BE. TTPy can selectively discriminate and kill bacteria efficiently over normal ocular cells. More importantly, TTPy shows excellent antibacterial ability in BE rat models infected by Staphylococcus aureus. Meanwhile, the bacterial killing behavior triggered by TTPy induces innate immune response at an early stage of infection, limiting subsequent robust inflammation and protecting retina from bacterial toxins and inflammation‐induced bystander damage. In addition, TTPy performs better antibacterial ability than commercially used Rose Bengal, suggesting its excellent capability of vision salvage in acute BE. This study exhibits an efficient photodynamic antibacterial treatment to BE, which induces an early intraocular immune response and saves useful vision, endowing TTPy a promising potential for clinical application of ocular infections. |
format | Online Article Text |
id | pubmed-9443450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-94434502022-09-09 Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis Li, Tingting Wu, Yan Cai, Wenting Wang, Dong Ren, Chengda Shen, Tianyi Yu, Donghui Qiang, Sujing Hu, Chengyu Zhao, Zheng Yu, Jing Peng, Chen Tang, Ben Zhong Adv Sci (Weinh) Research Articles Bacterial endophthalmitis (BE) is an acute eye infection and potentially irreversible blinding ocular disease. The empirical intravitreous injection of antibiotic is the primary treatment once diagnosed as BE. However, the overuse of antibiotic contributes to the drug resistance of pathogens and the retinal toxicity of antibiotic limits its application in clinic. Herein, a cationic aggregation‐induced emission luminogens named with triphenylamine thiophen pyridinium (TTPy) is reported for photodynamic treatment of BE. TTPy can selectively discriminate and kill bacteria efficiently over normal ocular cells. More importantly, TTPy shows excellent antibacterial ability in BE rat models infected by Staphylococcus aureus. Meanwhile, the bacterial killing behavior triggered by TTPy induces innate immune response at an early stage of infection, limiting subsequent robust inflammation and protecting retina from bacterial toxins and inflammation‐induced bystander damage. In addition, TTPy performs better antibacterial ability than commercially used Rose Bengal, suggesting its excellent capability of vision salvage in acute BE. This study exhibits an efficient photodynamic antibacterial treatment to BE, which induces an early intraocular immune response and saves useful vision, endowing TTPy a promising potential for clinical application of ocular infections. John Wiley and Sons Inc. 2022-07-06 /pmc/articles/PMC9443450/ /pubmed/35794437 http://dx.doi.org/10.1002/advs.202202485 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Li, Tingting Wu, Yan Cai, Wenting Wang, Dong Ren, Chengda Shen, Tianyi Yu, Donghui Qiang, Sujing Hu, Chengyu Zhao, Zheng Yu, Jing Peng, Chen Tang, Ben Zhong Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis |
title | Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis |
title_full | Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis |
title_fullStr | Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis |
title_full_unstemmed | Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis |
title_short | Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis |
title_sort | vision defense: efficient antibacterial aiegens induced early immune response for bacterial endophthalmitis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443450/ https://www.ncbi.nlm.nih.gov/pubmed/35794437 http://dx.doi.org/10.1002/advs.202202485 |
work_keys_str_mv | AT litingting visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT wuyan visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT caiwenting visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT wangdong visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT renchengda visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT shentianyi visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT yudonghui visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT qiangsujing visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT huchengyu visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT zhaozheng visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT yujing visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT pengchen visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis AT tangbenzhong visiondefenseefficientantibacterialaiegensinducedearlyimmuneresponseforbacterialendophthalmitis |