Cargando…
Enhancing spiking neural networks with hybrid top-down attention
As the representatives of brain-inspired models at the neuronal level, spiking neural networks (SNNs) have shown great promise in processing spatiotemporal information with intrinsic temporal dynamics. SNNs are expected to further improve their robustness and computing efficiency by introducing top-...
Autores principales: | Liu, Faqiang, Zhao, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443487/ https://www.ncbi.nlm.nih.gov/pubmed/36071719 http://dx.doi.org/10.3389/fnins.2022.949142 |
Ejemplares similares
-
Top-down modulation of attention by emotion
por: Mohanty, Aprajita, et al.
Publicado: (2013) -
Neuroevolution Guided Hybrid Spiking Neural Network Training
por: Lu, Sen, et al.
Publicado: (2022) -
A 3D Fully Convolutional Neural Network With Top-Down Attention-Guided Refinement for Accurate and Robust Automatic Segmentation of Amygdala and Its Subnuclei
por: Liu, Yilin, et al.
Publicado: (2020) -
STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks
por: Wu, Xiyan, et al.
Publicado: (2023) -
Object-based selection modulates top-down attentional shifts
por: Nishida, Satoshi, et al.
Publicado: (2014)