Cargando…
Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset
In 2019 there was an outbreak of coronavirus pandemic also known as COVID-19. Many scientists believe that the pandemic originated from Wuhan, China, before spreading to other parts of the globe. To reduce the spread of the disease, decision makers encouraged measures such as hand washing, face mask...
Autores principales: | Qorib, Miftahul, Oladunni, Timothy, Denis, Max, Ososanya, Esther, Cotae, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443617/ https://www.ncbi.nlm.nih.gov/pubmed/36092862 http://dx.doi.org/10.1016/j.eswa.2022.118715 |
Ejemplares similares
-
COVID-19 Vaccine Hesitancy: A Global Public Health and Risk Modelling Framework Using an Environmental Deep Neural Network, Sentiment Classification with Text Mining and Emotional Reactions from COVID-19 Vaccination Tweets
por: Qorib, Miftahul, et al.
Publicado: (2023) -
Text Mining and Determinants of Sentiments towards the COVID-19 Vaccine Booster of Twitter Users in Malaysia
por: Ong, Song-Quan, et al.
Publicado: (2022) -
Twitter sentiment analysis: An Arabic text mining approach based on COVID-19
por: Albahli, Saleh
Publicado: (2022) -
An analysis of COVID-19 vaccine sentiments and opinions on Twitter
por: Yousefinaghani, Samira, et al.
Publicado: (2021) -
COVID-19 Vaccination-Related Sentiments Analysis: A Case Study Using Worldwide Twitter Dataset
por: Reshi, Aijaz Ahmad, et al.
Publicado: (2022)