Cargando…
Adaptive boosting of random forest algorithm for automatic petrophysical interpretation of well logs
The power of Machine Learning is demonstrated for automatic interpretation of well logs and determining reservoir properties for volume of shale, porosity, and water saturation respectively for tight clastic sequences. Random Forest algorithms are reputed for their efficiency as they belong to a cla...
Autor principal: | Srivardhan, V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443645/ http://dx.doi.org/10.1007/s40328-022-00385-5 |
Ejemplares similares
-
Petrophysics : theory and practice of measuring reservoir rock and fluid transport properties /
por: Tiab, Djebbar
Publicado: (2012) -
Theory, measurement, and interpretation of well logs /
por: Bassiouni, Zaki
Publicado: (1994) -
New insights into permeability determination by coupling Stoneley wave propagation and conventional petrophysical logs in carbonate oil reservoirs
por: Rostami, Alireza, et al.
Publicado: (2022) -
Effect of Graphite
on the Mechanical and Petrophysical
Properties of Class G Oil Well Cement
por: Pratama, Muhammad Andiva, et al.
Publicado: (2023) -
Petrophysics of Kerogens Based on Realistic Structures
por: Alafnan, Saad
Publicado: (2021)