Cargando…
Novel read‐through fusion transcript Bcl2l2‐Pabpn1 in glioblastoma cells
Read‐through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read‐through fusion transcripts between neighbouring genes...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443946/ https://www.ncbi.nlm.nih.gov/pubmed/35894779 http://dx.doi.org/10.1111/jcmm.17481 |
Sumario: | Read‐through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read‐through fusion transcripts between neighbouring genes in glioblastoma remain unexplored. We performed paired‐end RNA‐seq of rat C6 glioma cells and normal cells and discovered a read‐through fusion transcript Bcl2l2‐Pabpn1 in which exon 3 of Bcl‐2‐like protein 2 (Bcl2l2) fused to exon 2 of Polyadenylate‐binding protein 1 (Pabpn1). This fusion transcript was found in both human glioblastoma and normal cells. Unlike other fusions reported in glioblastoma, Bcl2l2‐Pabpn1 appeared to result from RNA processing rather than genomic rearrangement. Bcl2l2‐Pabpn1 fusion transcript encoded a fusion protein with BH4, BCL and RRM domains. Functionally, Bcl2l2‐Pabpn1 knockdown by targeting its fusion junction decreased its expression, and suppressed cell proliferation, migration and invasion in vitro. Mechanistically, Bcl2l2‐Pabpn1 blocked Bax activity and activated PI3K/AKT pathway to promote glioblastoma progression. Together, our work characterized a glioblastoma‐associated Bcl2l2‐Pabpn1 fusion transcript shared by humans and rats. |
---|