Cargando…

A rapid and standardized workflow for functional assessment of bacterial biosensors in fecal samples

Gut metabolites are pivotal mediators of host-microbiome interactions and provide an important window on human physiology and disease. However, current methods to monitor gut metabolites rely on heavy and expensive technologies such as liquid chromatography-mass spectrometry (LC-MS). In that context...

Descripción completa

Detalles Bibliográficos
Autores principales: Zúñiga, Ana, Muñoz-Guamuro, Geisler, Boivineau, Lucile, Mayonove, Pauline, Conejero, Ismael, Pageaux, Georges-Philippe, Altwegg, Romain, Bonnet, Jerome
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444133/
https://www.ncbi.nlm.nih.gov/pubmed/36072290
http://dx.doi.org/10.3389/fbioe.2022.859600
Descripción
Sumario:Gut metabolites are pivotal mediators of host-microbiome interactions and provide an important window on human physiology and disease. However, current methods to monitor gut metabolites rely on heavy and expensive technologies such as liquid chromatography-mass spectrometry (LC-MS). In that context, robust, fast, field-deployable, and cost-effective strategies for monitoring fecal metabolites would support large-scale functional studies and routine monitoring of metabolites biomarkers associated with pathological conditions. Living cells are an attractive option to engineer biosensors due to their ability to detect and process many environmental signals and their self-replicating nature. Here we optimized a workflow for feces processing that supports metabolite detection using bacterial biosensors. We show that simple centrifugation and filtration steps remove host microbes and support reproducible preparation of a physiological-derived media retaining important characteristics of human feces, such as matrix effects and endogenous metabolites. We measure the performance of bacterial biosensors for benzoate, lactate, anhydrotetracycline, and bile acids, and find that they are highly sensitive to fecal matrices. However, encapsulating the bacteria in hydrogel helps reduce this inhibitory effect. Sensitivity to matrix effects is biosensor-dependent but also varies between individuals, highlighting the need for case-by-case optimization for biosensors’ operation in feces. Finally, by detecting endogenous bile acids, we demonstrate that bacterial biosensors could be used for future metabolite monitoring in feces. This work lays the foundation for the optimization and use of bacterial biosensors for fecal metabolites monitoring. In the future, our method could also allow rapid pre-prototyping of engineered bacteria designed to operate in the gut, with applications to in situ diagnostics and therapeutics.