Cargando…
An Explicit Adaptive Finite Difference Method for the Cahn–Hilliard Equation
In this study, we propose an explicit adaptive finite difference method (FDM) for the Cahn–Hilliard (CH) equation which describes the process of phase separation. The CH equation has been successfully utilized to model and simulate diverse field applications such as complex interfacial fluid flows a...
Autores principales: | Ham, Seokjun, Li, Yibao, Jeong, Darae, Lee, Chaeyoung, Kwak, Soobin, Hwang, Youngjin, Kim, Junseok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444276/ https://www.ncbi.nlm.nih.gov/pubmed/36089998 http://dx.doi.org/10.1007/s00332-022-09844-3 |
Ejemplares similares
-
A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation
por: Khodadadian, Amirreza, et al.
Publicado: (2019) -
Analysis and Optimal Velocity Control of a Stochastic Convective Cahn–Hilliard Equation
por: Scarpa, Luca
Publicado: (2021) -
On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation
por: Brkić, Antun Lovro, et al.
Publicado: (2020) -
Nonlocal-to-Local Convergence of Cahn–Hilliard Equations: Neumann Boundary Conditions and Viscosity Terms
por: Davoli, Elisa, et al.
Publicado: (2020) -
Enhancement of damaged-image prediction through Cahn–Hilliard image inpainting
por: Carrillo, José A., et al.
Publicado: (2021)